MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnffval Structured version   Visualization version   Unicode version

Theorem cantnffval 8560
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnffval.s  |-  S  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/) }
cantnffval.a  |-  ( ph  ->  A  e.  On )
cantnffval.b  |-  ( ph  ->  B  e.  On )
Assertion
Ref Expression
cantnffval  |-  ( ph  ->  ( A CNF  B )  =  ( f  e.  S  |->  [_OrdIso (  _E  , 
( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) ) )
Distinct variable groups:    f, g, h, k, z, A    B, f, g, h, k, z    S, f
Allowed substitution hints:    ph( z, f, g, h, k)    S( z, g, h, k)

Proof of Theorem cantnffval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffval.a . 2  |-  ( ph  ->  A  e.  On )
2 cantnffval.b . 2  |-  ( ph  ->  B  e.  On )
3 oveq12 6659 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  ^m  y
)  =  ( A  ^m  B ) )
43rabeqdv 3194 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  { g  e.  ( x  ^m  y )  |  g finSupp  (/) }  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/) } )
5 cantnffval.s . . . . 5  |-  S  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/) }
64, 5syl6eqr 2674 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  { g  e.  ( x  ^m  y )  |  g finSupp  (/) }  =  S )
7 simp1l 1085 . . . . . . . . . . 11  |-  ( ( ( x  =  A  /\  y  =  B )  /\  k  e. 
_V  /\  z  e.  _V )  ->  x  =  A )
87oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( x  =  A  /\  y  =  B )  /\  k  e. 
_V  /\  z  e.  _V )  ->  ( x  ^o  ( h `  k ) )  =  ( A  ^o  (
h `  k )
) )
98oveq1d 6665 . . . . . . . . 9  |-  ( ( ( x  =  A  /\  y  =  B )  /\  k  e. 
_V  /\  z  e.  _V )  ->  ( ( x  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  =  ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) ) )
109oveq1d 6665 . . . . . . . 8  |-  ( ( ( x  =  A  /\  y  =  B )  /\  k  e. 
_V  /\  z  e.  _V )  ->  ( ( ( x  ^o  (
h `  k )
)  .o  ( f `
 ( h `  k ) ) )  +o  z )  =  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) )
1110mpt2eq3dva 6719 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) )  +o  z ) ) )
12 eqid 2622 . . . . . . 7  |-  (/)  =  (/)
13 seqomeq12 7549 . . . . . . 7  |-  ( ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) )  +o  z ) )  /\  (/)  =  (/) )  -> seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) )
1411, 12, 13sylancl 694 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  -> seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) )
1514fveq1d 6193 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( x  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
)  =  (seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  h ) )
1615csbeq2dv 3992 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  [_OrdIso (  _E  , 
( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h )  =  [_OrdIso (  _E  , 
( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) )
176, 16mpteq12dv 4733 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( f  e.  {
g  e.  ( x  ^m  y )  |  g finSupp  (/) }  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) )  =  ( f  e.  S  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) ) )
18 df-cnf 8559 . . 3  |- CNF  =  ( x  e.  On , 
y  e.  On  |->  ( f  e.  { g  e.  ( x  ^m  y )  |  g finSupp  (/)
}  |->  [_OrdIso (  _E  , 
( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( x  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) ) )
19 ovex 6678 . . . . 5  |-  ( A  ^m  B )  e. 
_V
205, 19rabex2 4815 . . . 4  |-  S  e. 
_V
2120mptex 6486 . . 3  |-  ( f  e.  S  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) )  e.  _V
2217, 18, 21ovmpt2a 6791 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A CNF  B )  =  ( f  e.  S  |->  [_OrdIso (  _E  , 
( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) ) )
231, 2, 22syl2anc 693 1  |-  ( ph  ->  ( A CNF  B )  =  ( f  e.  S  |->  [_OrdIso (  _E  , 
( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   [_csb 3533   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    _E cep 5028   dom cdm 5114   Oncon0 5723   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   supp csupp 7295  seq𝜔cseqom 7542    +o coa 7557    .o comu 7558    ^o coe 7559    ^m cmap 7857   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-cnf 8559
This theorem is referenced by:  cantnfdm  8561  cantnfval  8565  cantnff  8571
  Copyright terms: Public domain W3C validator