MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfdm Structured version   Visualization version   Unicode version

Theorem cantnfdm 8561
Description: The domain of the Cantor normal form function (in later lemmas we will use  dom  ( A CNF 
B ) to abbreviate "the set of finitely supported functions from  B to  A"). (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnffval.s  |-  S  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/) }
cantnffval.a  |-  ( ph  ->  A  e.  On )
cantnffval.b  |-  ( ph  ->  B  e.  On )
Assertion
Ref Expression
cantnfdm  |-  ( ph  ->  dom  ( A CNF  B
)  =  S )
Distinct variable groups:    A, g    B, g
Allowed substitution hints:    ph( g)    S( g)

Proof of Theorem cantnfdm
Dummy variables  f  h  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffval.s . . . 4  |-  S  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/) }
2 cantnffval.a . . . 4  |-  ( ph  ->  A  e.  On )
3 cantnffval.b . . . 4  |-  ( ph  ->  B  e.  On )
41, 2, 3cantnffval 8560 . . 3  |-  ( ph  ->  ( A CNF  B )  =  ( f  e.  S  |->  [_OrdIso (  _E  , 
( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) ) )
54dmeqd 5326 . 2  |-  ( ph  ->  dom  ( A CNF  B
)  =  dom  (
f  e.  S  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
6 fvex 6201 . . . . 5  |-  (seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  h )  e.  _V
76csbex 4793 . . . 4  |-  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h )  e.  _V
87rgenw 2924 . . 3  |-  A. f  e.  S  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h )  e.  _V
9 dmmptg 5632 . . 3  |-  ( A. f  e.  S  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h )  e.  _V  ->  dom  ( f  e.  S  |-> 
[_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )  =  S )
108, 9ax-mp 5 . 2  |-  dom  (
f  e.  S  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )  =  S
115, 10syl6eq 2672 1  |-  ( ph  ->  dom  ( A CNF  B
)  =  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   [_csb 3533   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    _E cep 5028   dom cdm 5114   Oncon0 5723   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   supp csupp 7295  seq𝜔cseqom 7542    +o coa 7557    .o comu 7558    ^o coe 7559    ^m cmap 7857   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-cnf 8559
This theorem is referenced by:  cantnfs  8563  cantnfval  8565  cantnff  8571  oemapso  8579  wemapwe  8594  oef1o  8595
  Copyright terms: Public domain W3C validator