MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnff Structured version   Visualization version   Unicode version

Theorem cantnff 8571
Description: The CNF function is a function from finitely supported functions from  B to  A, to the ordinal exponential  A  ^o  B. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
Assertion
Ref Expression
cantnff  |-  ( ph  ->  ( A CNF  B ) : S --> ( A  ^o  B ) )

Proof of Theorem cantnff
Dummy variables  f 
g  h  k  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . 4  |-  (seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( h `  k
) )  .o  (
f `  ( h `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  h )  e.  _V
21csbex 4793 . . 3  |-  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h )  e.  _V
32a1i 11 . 2  |-  ( (
ph  /\  f  e.  S )  ->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h )  e.  _V )
4 eqid 2622 . . . 4  |-  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
}  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
}
5 cantnfs.a . . . 4  |-  ( ph  ->  A  e.  On )
6 cantnfs.b . . . 4  |-  ( ph  ->  B  e.  On )
74, 5, 6cantnffval 8560 . . 3  |-  ( ph  ->  ( A CNF  B )  =  ( f  e. 
{ g  e.  ( A  ^m  B )  |  g finSupp  (/) }  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
8 cantnfs.s . . . . 5  |-  S  =  dom  ( A CNF  B
)
94, 5, 6cantnfdm 8561 . . . . 5  |-  ( ph  ->  dom  ( A CNF  B
)  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
} )
108, 9syl5eq 2668 . . . 4  |-  ( ph  ->  S  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
} )
1110mpteq1d 4738 . . 3  |-  ( ph  ->  ( f  e.  S  |-> 
[_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )  =  ( f  e.  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
}  |->  [_OrdIso (  _E  , 
( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) ) )
127, 11eqtr4d 2659 . 2  |-  ( ph  ->  ( A CNF  B )  =  ( f  e.  S  |->  [_OrdIso (  _E  , 
( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) ) )
135adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  On )
146adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  On )
15 eqid 2622 . . . . . . . 8  |- OrdIso (  _E  ,  ( x supp  (/) ) )  = OrdIso (  _E  , 
( x supp  (/) ) )
16 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  S )
17 eqid 2622 . . . . . . . 8  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( x supp  (/) ) ) `
 k ) )  .o  ( x `  (OrdIso (  _E  ,  ( x supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( x supp  (/) ) ) `  k ) )  .o  ( x `  (OrdIso (  _E  ,  (
x supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) )
188, 13, 14, 15, 16, 17cantnfval 8565 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  (
( A CNF  B ) `
 x )  =  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( x supp  (/) ) ) `
 k ) )  .o  ( x `  (OrdIso (  _E  ,  ( x supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  dom OrdIso (  _E  ,  ( x supp  (/) ) ) ) )
1918adantr 481 . . . . . 6  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  (
( A CNF  B ) `
 x )  =  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( x supp  (/) ) ) `
 k ) )  .o  ( x `  (OrdIso (  _E  ,  ( x supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  dom OrdIso (  _E  ,  ( x supp  (/) ) ) ) )
20 ovex 6678 . . . . . . . . . . 11  |-  ( x supp  (/) )  e.  _V
218, 13, 14, 15, 16cantnfcl 8564 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  S )  ->  (  _E  We  ( x supp  (/) )  /\  dom OrdIso (  _E  ,  ( x supp  (/) ) )  e. 
om ) )
2221simpld 475 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  _E  We  ( x supp  (/) ) )
2315oien 8443 . . . . . . . . . . 11  |-  ( ( ( x supp  (/) )  e. 
_V  /\  _E  We  ( x supp  (/) ) )  ->  dom OrdIso (  _E  , 
( x supp  (/) ) ) 
~~  ( x supp  (/) ) )
2420, 22, 23sylancr 695 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  dom OrdIso (  _E  ,  ( x supp  (/) ) )  ~~  (
x supp  (/) ) )
2524adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  dom OrdIso (  _E  ,  ( x supp  (/) ) )  ~~  (
x supp  (/) ) )
26 suppssdm 7308 . . . . . . . . . . 11  |-  ( x supp  (/) )  C_  dom  x
278, 5, 6cantnfs 8563 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  S  <->  ( x : B --> A  /\  x finSupp 
(/) ) ) )
2827simprbda 653 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  S )  ->  x : B --> A )
29 fdm 6051 . . . . . . . . . . . 12  |-  ( x : B --> A  ->  dom  x  =  B )
3028, 29syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  dom  x  =  B )
3126, 30syl5sseq 3653 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  (
x supp  (/) )  C_  B
)
32 feq3 6028 . . . . . . . . . . . . . 14  |-  ( A  =  (/)  ->  ( x : B --> A  <->  x : B
--> (/) ) )
3328, 32syl5ibcom 235 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  ( A  =  (/)  ->  x : B --> (/) ) )
3433imp 445 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  x : B --> (/) )
35 f00 6087 . . . . . . . . . . . 12  |-  ( x : B --> (/)  <->  ( x  =  (/)  /\  B  =  (/) ) )
3634, 35sylib 208 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  (
x  =  (/)  /\  B  =  (/) ) )
3736simprd 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  B  =  (/) )
38 sseq0 3975 . . . . . . . . . 10  |-  ( ( ( x supp  (/) )  C_  B  /\  B  =  (/) )  ->  ( x supp  (/) )  =  (/) )
3931, 37, 38syl2an2r 876 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  (
x supp  (/) )  =  (/) )
4025, 39breqtrd 4679 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  dom OrdIso (  _E  ,  ( x supp  (/) ) )  ~~  (/) )
41 en0 8019 . . . . . . . 8  |-  ( dom OrdIso (  _E  ,  (
x supp  (/) ) )  ~~  (/)  <->  dom OrdIso (  _E  ,  (
x supp  (/) ) )  =  (/) )
4240, 41sylib 208 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  dom OrdIso (  _E  ,  ( x supp  (/) ) )  =  (/) )
4342fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( x supp  (/) ) ) `
 k ) )  .o  ( x `  (OrdIso (  _E  ,  ( x supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  dom OrdIso (  _E  ,  ( x supp  (/) ) ) )  =  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( x supp  (/) ) ) `
 k ) )  .o  ( x `  (OrdIso (  _E  ,  ( x supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  (/) ) )
44 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
4517seqom0g 7551 . . . . . . 7  |-  ( (/)  e.  _V  ->  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( x supp  (/) ) ) `
 k ) )  .o  ( x `  (OrdIso (  _E  ,  ( x supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  (/) )  =  (/) )
4644, 45mp1i 13 . . . . . 6  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  (OrdIso (  _E  ,  ( x supp  (/) ) ) `
 k ) )  .o  ( x `  (OrdIso (  _E  ,  ( x supp  (/) ) ) `  k ) ) )  +o  z ) ) ,  (/) ) `  (/) )  =  (/) )
4719, 43, 463eqtrd 2660 . . . . 5  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  (
( A CNF  B ) `
 x )  =  (/) )
48 el1o 7579 . . . . 5  |-  ( ( ( A CNF  B ) `
 x )  e.  1o  <->  ( ( A CNF 
B ) `  x
)  =  (/) )
4947, 48sylibr 224 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  (
( A CNF  B ) `
 x )  e.  1o )
5037oveq2d 6666 . . . . 5  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  ( A  ^o  B )  =  ( A  ^o  (/) ) )
5113adantr 481 . . . . . 6  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  A  e.  On )
52 oe0 7602 . . . . . 6  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
5351, 52syl 17 . . . . 5  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  ( A  ^o  (/) )  =  1o )
5450, 53eqtrd 2656 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  ( A  ^o  B )  =  1o )
5549, 54eleqtrrd 2704 . . 3  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =  (/) )  ->  (
( A CNF  B ) `
 x )  e.  ( A  ^o  B
) )
5613adantr 481 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =/=  (/) )  ->  A  e.  On )
5714adantr 481 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =/=  (/) )  ->  B  e.  On )
5816adantr 481 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =/=  (/) )  ->  x  e.  S )
59 on0eln0 5780 . . . . . 6  |-  ( A  e.  On  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
6013, 59syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
6160biimpar 502 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =/=  (/) )  ->  (/)  e.  A
)
6231adantr 481 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =/=  (/) )  ->  (
x supp  (/) )  C_  B
)
638, 56, 57, 58, 61, 57, 62cantnflt2 8570 . . 3  |-  ( ( ( ph  /\  x  e.  S )  /\  A  =/=  (/) )  ->  (
( A CNF  B ) `
 x )  e.  ( A  ^o  B
) )
6455, 63pm2.61dane 2881 . 2  |-  ( (
ph  /\  x  e.  S )  ->  (
( A CNF  B ) `
 x )  e.  ( A  ^o  B
) )
653, 12, 64fmpt2d 6393 1  |-  ( ph  ->  ( A CNF  B ) : S --> ( A  ^o  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   [_csb 3533    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    _E cep 5028    We wwe 5072   dom cdm 5114   Oncon0 5723   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   supp csupp 7295  seq𝜔cseqom 7542   1oc1o 7553    +o coa 7557    .o comu 7558    ^o coe 7559    ^m cmap 7857    ~~ cen 7952   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cantnfp1  8578  cantnflem1  8586  cantnflem3  8588  cantnflem4  8589  cantnf  8590
  Copyright terms: Public domain W3C validator