MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfval Structured version   Visualization version   Unicode version

Theorem cantnfval 8565
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
cantnfcl.g  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
cantnfcl.f  |-  ( ph  ->  F  e.  S )
cantnfval.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
Assertion
Ref Expression
cantnfval  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  ( H `  dom  G ) )
Distinct variable groups:    z, k, B    A, k, z    k, F, z    S, k, z   
k, G, z    ph, k,
z
Allowed substitution hints:    H( z, k)

Proof of Theorem cantnfval
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
}  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
}
2 cantnfs.a . . . 4  |-  ( ph  ->  A  e.  On )
3 cantnfs.b . . . 4  |-  ( ph  ->  B  e.  On )
41, 2, 3cantnffval 8560 . . 3  |-  ( ph  ->  ( A CNF  B )  =  ( f  e. 
{ g  e.  ( A  ^m  B )  |  g finSupp  (/) }  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
54fveq1d 6193 . 2  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  ( ( f  e.  { g  e.  ( A  ^m  B
)  |  g finSupp  (/) }  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) `  F
) )
6 cantnfcl.f . . . 4  |-  ( ph  ->  F  e.  S )
7 cantnfs.s . . . . 5  |-  S  =  dom  ( A CNF  B
)
81, 2, 3cantnfdm 8561 . . . . 5  |-  ( ph  ->  dom  ( A CNF  B
)  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
} )
97, 8syl5eq 2668 . . . 4  |-  ( ph  ->  S  =  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
} )
106, 9eleqtrd 2703 . . 3  |-  ( ph  ->  F  e.  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
} )
11 ovex 6678 . . . . . 6  |-  ( f supp  (/) )  e.  _V
12 eqid 2622 . . . . . . 7  |- OrdIso (  _E  ,  ( f supp  (/) ) )  = OrdIso (  _E  , 
( f supp  (/) ) )
1312oiexg 8440 . . . . . 6  |-  ( ( f supp  (/) )  e.  _V  -> OrdIso (  _E  ,  ( f supp  (/) ) )  e. 
_V )
1411, 13mp1i 13 . . . . 5  |-  ( f  =  F  -> OrdIso (  _E  ,  ( f supp  (/) ) )  e.  _V )
15 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  h  = OrdIso (  _E  ,  ( f supp  (/) ) ) )
16 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( f  =  F  ->  (
f supp  (/) )  =  ( F supp  (/) ) )
1716adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  ( f supp  (/) )  =  ( F supp  (/) ) )
18 oieq2 8418 . . . . . . . . . . . . . . . 16  |-  ( ( f supp  (/) )  =  ( F supp  (/) )  -> OrdIso (  _E  ,  ( f supp  (/) ) )  = OrdIso (  _E  , 
( F supp  (/) ) ) )
1917, 18syl 17 . . . . . . . . . . . . . . 15  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  -> OrdIso (  _E  , 
( f supp  (/) ) )  = OrdIso (  _E  , 
( F supp  (/) ) ) )
2015, 19eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  h  = OrdIso (  _E  ,  ( F supp  (/) ) ) )
21 cantnfcl.g . . . . . . . . . . . . . 14  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
2220, 21syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  h  =  G )
2322fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  ( h `  k )  =  ( G `  k ) )
2423oveq2d 6666 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  ( A  ^o  ( h `  k
) )  =  ( A  ^o  ( G `
 k ) ) )
25 simpl 473 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  f  =  F )
2625, 23fveq12d 6197 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  ( f `  ( h `  k
) )  =  ( F `  ( G `
 k ) ) )
2724, 26oveq12d 6668 . . . . . . . . . 10  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  =  ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) ) )
2827oveq1d 6665 . . . . . . . . 9  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  ( (
( A  ^o  (
h `  k )
)  .o  ( f `
 ( h `  k ) ) )  +o  z )  =  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) )
2928mpt2eq3dv 6721 . . . . . . . 8  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  ( k  e.  _V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) )  =  ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) )
30 eqid 2622 . . . . . . . 8  |-  (/)  =  (/)
31 seqomeq12 7549 . . . . . . . 8  |-  ( ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) )  /\  (/)  =  (/) )  -> seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) ) )
3229, 30, 31sylancl 694 . . . . . . 7  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  -> seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) ) )
33 cantnfval.h . . . . . . 7  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
3432, 33syl6eqr 2674 . . . . . 6  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  -> seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) )  =  H
)
3522dmeqd 5326 . . . . . 6  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  dom  h  =  dom  G )
3634, 35fveq12d 6197 . . . . 5  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( f supp  (/) ) ) )  ->  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
)  =  ( H `
 dom  G )
)
3714, 36csbied 3560 . . . 4  |-  ( f  =  F  ->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h )  =  ( H `  dom  G ) )
38 eqid 2622 . . . 4  |-  ( f  e.  { g  e.  ( A  ^m  B
)  |  g finSupp  (/) }  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )  =  ( f  e.  { g  e.  ( A  ^m  B )  |  g finSupp  (/)
}  |->  [_OrdIso (  _E  , 
( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) )
39 fvex 6201 . . . 4  |-  ( H `
 dom  G )  e.  _V
4037, 38, 39fvmpt 6282 . . 3  |-  ( F  e.  { g  e.  ( A  ^m  B
)  |  g finSupp  (/) }  ->  ( ( f  e.  {
g  e.  ( A  ^m  B )  |  g finSupp  (/) }  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) ) `  dom  h ) ) `  F )  =  ( H `  dom  G ) )
4110, 40syl 17 . 2  |-  ( ph  ->  ( ( f  e. 
{ g  e.  ( A  ^m  B )  |  g finSupp  (/) }  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) `  F
)  =  ( H `
 dom  G )
)
425, 41eqtrd 2656 1  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  ( H `  dom  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   [_csb 3533   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    _E cep 5028   dom cdm 5114   Oncon0 5723   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   supp csupp 7295  seq𝜔cseqom 7542    +o coa 7557    .o comu 7558    ^o coe 7559    ^m cmap 7857   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cantnfval2  8566  cantnfle  8568  cantnflt2  8570  cantnff  8571  cantnf0  8572  cantnfp1lem3  8577  cantnflem1  8586  cantnf  8590  cnfcom2  8599
  Copyright terms: Public domain W3C validator