| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caofass | Structured version Visualization version Unicode version | ||
| Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 |
|
| caofref.2 |
|
| caofcom.3 |
|
| caofass.4 |
|
| caofass.5 |
|
| Ref | Expression |
|---|---|
| caofass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofass.5 |
. . . . . 6
| |
| 2 | 1 | ralrimivvva 2972 |
. . . . 5
|
| 3 | 2 | adantr 481 |
. . . 4
|
| 4 | caofref.2 |
. . . . . 6
| |
| 5 | 4 | ffvelrnda 6359 |
. . . . 5
|
| 6 | caofcom.3 |
. . . . . 6
| |
| 7 | 6 | ffvelrnda 6359 |
. . . . 5
|
| 8 | caofass.4 |
. . . . . 6
| |
| 9 | 8 | ffvelrnda 6359 |
. . . . 5
|
| 10 | oveq1 6657 |
. . . . . . . 8
| |
| 11 | 10 | oveq1d 6665 |
. . . . . . 7
|
| 12 | oveq1 6657 |
. . . . . . 7
| |
| 13 | 11, 12 | eqeq12d 2637 |
. . . . . 6
|
| 14 | oveq2 6658 |
. . . . . . . 8
| |
| 15 | 14 | oveq1d 6665 |
. . . . . . 7
|
| 16 | oveq1 6657 |
. . . . . . . 8
| |
| 17 | 16 | oveq2d 6666 |
. . . . . . 7
|
| 18 | 15, 17 | eqeq12d 2637 |
. . . . . 6
|
| 19 | oveq2 6658 |
. . . . . . 7
| |
| 20 | oveq2 6658 |
. . . . . . . 8
| |
| 21 | 20 | oveq2d 6666 |
. . . . . . 7
|
| 22 | 19, 21 | eqeq12d 2637 |
. . . . . 6
|
| 23 | 13, 18, 22 | rspc3v 3325 |
. . . . 5
|
| 24 | 5, 7, 9, 23 | syl3anc 1326 |
. . . 4
|
| 25 | 3, 24 | mpd 15 |
. . 3
|
| 26 | 25 | mpteq2dva 4744 |
. 2
|
| 27 | caofref.1 |
. . 3
| |
| 28 | ovexd 6680 |
. . 3
| |
| 29 | 4 | feqmptd 6249 |
. . . 4
|
| 30 | 6 | feqmptd 6249 |
. . . 4
|
| 31 | 27, 5, 7, 29, 30 | offval2 6914 |
. . 3
|
| 32 | 8 | feqmptd 6249 |
. . 3
|
| 33 | 27, 28, 9, 31, 32 | offval2 6914 |
. 2
|
| 34 | ovexd 6680 |
. . 3
| |
| 35 | 27, 7, 9, 30, 32 | offval2 6914 |
. . 3
|
| 36 | 27, 5, 34, 29, 35 | offval2 6914 |
. 2
|
| 37 | 26, 33, 36 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 |
| This theorem is referenced by: psrgrp 19398 psrlmod 19401 mndvass 20198 itg2mulc 23514 plydivlem4 24051 dchrabl 24979 lfladdass 34360 lflvsass 34368 expgrowth 38534 |
| Copyright terms: Public domain | W3C validator |