MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofass Structured version   Visualization version   Unicode version

Theorem caofass 6931
Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofcom.3  |-  ( ph  ->  G : A --> S )
caofass.4  |-  ( ph  ->  H : A --> S )
caofass.5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x R y ) T z )  =  ( x O ( y P z ) ) )
Assertion
Ref Expression
caofass  |-  ( ph  ->  ( ( F  oF R G )  oF T H )  =  ( F  oF O ( G  oF P H ) ) )
Distinct variable groups:    x, y,
z, F    x, G, y, z    x, H, y, z    x, O, y, z    x, P, y, z    ph, x, y, z   
x, R, y, z   
x, S, y, z   
x, T, y, z
Allowed substitution hints:    A( x, y, z)    V( x, y, z)

Proof of Theorem caofass
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofass.5 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x R y ) T z )  =  ( x O ( y P z ) ) )
21ralrimivvva 2972 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x R y ) T z )  =  ( x O ( y P z ) ) )
32adantr 481 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  ( (
x R y ) T z )  =  ( x O ( y P z ) ) )
4 caofref.2 . . . . . 6  |-  ( ph  ->  F : A --> S )
54ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
6 caofcom.3 . . . . . 6  |-  ( ph  ->  G : A --> S )
76ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
8 caofass.4 . . . . . 6  |-  ( ph  ->  H : A --> S )
98ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( H `  w )  e.  S )
10 oveq1 6657 . . . . . . . 8  |-  ( x  =  ( F `  w )  ->  (
x R y )  =  ( ( F `
 w ) R y ) )
1110oveq1d 6665 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
( x R y ) T z )  =  ( ( ( F `  w ) R y ) T z ) )
12 oveq1 6657 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
x O ( y P z ) )  =  ( ( F `
 w ) O ( y P z ) ) )
1311, 12eqeq12d 2637 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
( ( x R y ) T z )  =  ( x O ( y P z ) )  <->  ( (
( F `  w
) R y ) T z )  =  ( ( F `  w ) O ( y P z ) ) ) )
14 oveq2 6658 . . . . . . . 8  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) R y )  =  ( ( F `
 w ) R ( G `  w
) ) )
1514oveq1d 6665 . . . . . . 7  |-  ( y  =  ( G `  w )  ->  (
( ( F `  w ) R y ) T z )  =  ( ( ( F `  w ) R ( G `  w ) ) T z ) )
16 oveq1 6657 . . . . . . . 8  |-  ( y  =  ( G `  w )  ->  (
y P z )  =  ( ( G `
 w ) P z ) )
1716oveq2d 6666 . . . . . . 7  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) O ( y P z ) )  =  ( ( F `
 w ) O ( ( G `  w ) P z ) ) )
1815, 17eqeq12d 2637 . . . . . 6  |-  ( y  =  ( G `  w )  ->  (
( ( ( F `
 w ) R y ) T z )  =  ( ( F `  w ) O ( y P z ) )  <->  ( (
( F `  w
) R ( G `
 w ) ) T z )  =  ( ( F `  w ) O ( ( G `  w
) P z ) ) ) )
19 oveq2 6658 . . . . . . 7  |-  ( z  =  ( H `  w )  ->  (
( ( F `  w ) R ( G `  w ) ) T z )  =  ( ( ( F `  w ) R ( G `  w ) ) T ( H `  w
) ) )
20 oveq2 6658 . . . . . . . 8  |-  ( z  =  ( H `  w )  ->  (
( G `  w
) P z )  =  ( ( G `
 w ) P ( H `  w
) ) )
2120oveq2d 6666 . . . . . . 7  |-  ( z  =  ( H `  w )  ->  (
( F `  w
) O ( ( G `  w ) P z ) )  =  ( ( F `
 w ) O ( ( G `  w ) P ( H `  w ) ) ) )
2219, 21eqeq12d 2637 . . . . . 6  |-  ( z  =  ( H `  w )  ->  (
( ( ( F `
 w ) R ( G `  w
) ) T z )  =  ( ( F `  w ) O ( ( G `
 w ) P z ) )  <->  ( (
( F `  w
) R ( G `
 w ) ) T ( H `  w ) )  =  ( ( F `  w ) O ( ( G `  w
) P ( H `
 w ) ) ) ) )
2313, 18, 22rspc3v 3325 . . . . 5  |-  ( ( ( F `  w
)  e.  S  /\  ( G `  w )  e.  S  /\  ( H `  w )  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x R y ) T z )  =  ( x O ( y P z ) )  -> 
( ( ( F `
 w ) R ( G `  w
) ) T ( H `  w ) )  =  ( ( F `  w ) O ( ( G `
 w ) P ( H `  w
) ) ) ) )
245, 7, 9, 23syl3anc 1326 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x R y ) T z )  =  ( x O ( y P z ) )  -> 
( ( ( F `
 w ) R ( G `  w
) ) T ( H `  w ) )  =  ( ( F `  w ) O ( ( G `
 w ) P ( H `  w
) ) ) ) )
253, 24mpd 15 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( ( F `  w ) R ( G `  w ) ) T ( H `
 w ) )  =  ( ( F `
 w ) O ( ( G `  w ) P ( H `  w ) ) ) )
2625mpteq2dva 4744 . 2  |-  ( ph  ->  ( w  e.  A  |->  ( ( ( F `
 w ) R ( G `  w
) ) T ( H `  w ) ) )  =  ( w  e.  A  |->  ( ( F `  w
) O ( ( G `  w ) P ( H `  w ) ) ) ) )
27 caofref.1 . . 3  |-  ( ph  ->  A  e.  V )
28 ovexd 6680 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) R ( G `
 w ) )  e.  _V )
294feqmptd 6249 . . . 4  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
306feqmptd 6249 . . . 4  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
3127, 5, 7, 29, 30offval2 6914 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( w  e.  A  |->  ( ( F `  w ) R ( G `  w ) ) ) )
328feqmptd 6249 . . 3  |-  ( ph  ->  H  =  ( w  e.  A  |->  ( H `
 w ) ) )
3327, 28, 9, 31, 32offval2 6914 . 2  |-  ( ph  ->  ( ( F  oF R G )  oF T H )  =  ( w  e.  A  |->  ( ( ( F `  w
) R ( G `
 w ) ) T ( H `  w ) ) ) )
34 ovexd 6680 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) P ( H `
 w ) )  e.  _V )
3527, 7, 9, 30, 32offval2 6914 . . 3  |-  ( ph  ->  ( G  oF P H )  =  ( w  e.  A  |->  ( ( G `  w ) P ( H `  w ) ) ) )
3627, 5, 34, 29, 35offval2 6914 . 2  |-  ( ph  ->  ( F  oF O ( G  oF P H ) )  =  ( w  e.  A  |->  ( ( F `  w ) O ( ( G `
 w ) P ( H `  w
) ) ) ) )
3726, 33, 363eqtr4d 2666 1  |-  ( ph  ->  ( ( F  oF R G )  oF T H )  =  ( F  oF O ( G  oF P H ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897
This theorem is referenced by:  psrgrp  19398  psrlmod  19401  mndvass  20198  itg2mulc  23514  plydivlem4  24051  dchrabl  24979  lfladdass  34360  lflvsass  34368  expgrowth  38534
  Copyright terms: Public domain W3C validator