| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2mulc | Structured version Visualization version Unicode version | ||
| Description: The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg2mulc.2 |
|
| itg2mulc.3 |
|
| itg2mulc.4 |
|
| Ref | Expression |
|---|---|
| itg2mulc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mulc.2 |
. . . . 5
| |
| 2 | 1 | adantr 481 |
. . . 4
|
| 3 | itg2mulc.3 |
. . . . 5
| |
| 4 | 3 | adantr 481 |
. . . 4
|
| 5 | itg2mulc.4 |
. . . . . . . 8
| |
| 6 | elrege0 12278 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylib 208 |
. . . . . . 7
|
| 8 | 7 | simpld 475 |
. . . . . 6
|
| 9 | 8 | anim1i 592 |
. . . . 5
|
| 10 | elrp 11834 |
. . . . 5
| |
| 11 | 9, 10 | sylibr 224 |
. . . 4
|
| 12 | 2, 4, 11 | itg2mulclem 23513 |
. . 3
|
| 13 | ge0mulcl 12285 |
. . . . . . . . 9
| |
| 14 | 13 | adantl 482 |
. . . . . . . 8
|
| 15 | fconst6g 6094 |
. . . . . . . . 9
| |
| 16 | 5, 15 | syl 17 |
. . . . . . . 8
|
| 17 | reex 10027 |
. . . . . . . . 9
| |
| 18 | 17 | a1i 11 |
. . . . . . . 8
|
| 19 | inidm 3822 |
. . . . . . . 8
| |
| 20 | 14, 16, 1, 18, 18, 19 | off 6912 |
. . . . . . 7
|
| 21 | 20 | adantr 481 |
. . . . . 6
|
| 22 | icossicc 12260 |
. . . . . . . . 9
| |
| 23 | fss 6056 |
. . . . . . . . 9
| |
| 24 | 20, 22, 23 | sylancl 694 |
. . . . . . . 8
|
| 25 | 24 | adantr 481 |
. . . . . . 7
|
| 26 | 8, 3 | remulcld 10070 |
. . . . . . . 8
|
| 27 | 26 | adantr 481 |
. . . . . . 7
|
| 28 | itg2lecl 23505 |
. . . . . . 7
| |
| 29 | 25, 27, 12, 28 | syl3anc 1326 |
. . . . . 6
|
| 30 | 11 | rpreccld 11882 |
. . . . . 6
|
| 31 | 21, 29, 30 | itg2mulclem 23513 |
. . . . 5
|
| 32 | 2 | feqmptd 6249 |
. . . . . . . 8
|
| 33 | rge0ssre 12280 |
. . . . . . . . . . . . . 14
| |
| 34 | ax-resscn 9993 |
. . . . . . . . . . . . . 14
| |
| 35 | 33, 34 | sstri 3612 |
. . . . . . . . . . . . 13
|
| 36 | fss 6056 |
. . . . . . . . . . . . 13
| |
| 37 | 1, 35, 36 | sylancl 694 |
. . . . . . . . . . . 12
|
| 38 | 37 | adantr 481 |
. . . . . . . . . . 11
|
| 39 | 38 | ffvelrnda 6359 |
. . . . . . . . . 10
|
| 40 | 39 | mulid2d 10058 |
. . . . . . . . 9
|
| 41 | 40 | mpteq2dva 4744 |
. . . . . . . 8
|
| 42 | 32, 41 | eqtr4d 2659 |
. . . . . . 7
|
| 43 | 17 | a1i 11 |
. . . . . . . 8
|
| 44 | 1red 10055 |
. . . . . . . 8
| |
| 45 | 43, 30, 11 | ofc12 6922 |
. . . . . . . . . 10
|
| 46 | fconstmpt 5163 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | syl6eq 2672 |
. . . . . . . . 9
|
| 48 | 8 | recnd 10068 |
. . . . . . . . . . . 12
|
| 49 | 48 | adantr 481 |
. . . . . . . . . . 11
|
| 50 | 11 | rpne0d 11877 |
. . . . . . . . . . 11
|
| 51 | 49, 50 | recid2d 10797 |
. . . . . . . . . 10
|
| 52 | 51 | mpteq2dv 4745 |
. . . . . . . . 9
|
| 53 | 47, 52 | eqtrd 2656 |
. . . . . . . 8
|
| 54 | 43, 44, 39, 53, 32 | offval2 6914 |
. . . . . . 7
|
| 55 | 30 | rpcnd 11874 |
. . . . . . . . 9
|
| 56 | fconst6g 6094 |
. . . . . . . . 9
| |
| 57 | 55, 56 | syl 17 |
. . . . . . . 8
|
| 58 | fconst6g 6094 |
. . . . . . . . 9
| |
| 59 | 49, 58 | syl 17 |
. . . . . . . 8
|
| 60 | mulass 10024 |
. . . . . . . . 9
| |
| 61 | 60 | adantl 482 |
. . . . . . . 8
|
| 62 | 43, 57, 59, 38, 61 | caofass 6931 |
. . . . . . 7
|
| 63 | 42, 54, 62 | 3eqtr2d 2662 |
. . . . . 6
|
| 64 | 63 | fveq2d 6195 |
. . . . 5
|
| 65 | 29 | recnd 10068 |
. . . . . 6
|
| 66 | 65, 49, 50 | divrec2d 10805 |
. . . . 5
|
| 67 | 31, 64, 66 | 3brtr4d 4685 |
. . . 4
|
| 68 | 4, 29, 11 | lemuldiv2d 11922 |
. . . 4
|
| 69 | 67, 68 | mpbird 247 |
. . 3
|
| 70 | itg2cl 23499 |
. . . . . 6
| |
| 71 | 24, 70 | syl 17 |
. . . . 5
|
| 72 | 26 | rexrd 10089 |
. . . . 5
|
| 73 | xrletri3 11985 |
. . . . 5
| |
| 74 | 71, 72, 73 | syl2anc 693 |
. . . 4
|
| 75 | 74 | adantr 481 |
. . 3
|
| 76 | 12, 69, 75 | mpbir2and 957 |
. 2
|
| 77 | 17 | a1i 11 |
. . . . . 6
|
| 78 | 37 | adantr 481 |
. . . . . 6
|
| 79 | 8 | adantr 481 |
. . . . . 6
|
| 80 | 0re 10040 |
. . . . . . 7
| |
| 81 | 80 | a1i 11 |
. . . . . 6
|
| 82 | simplr 792 |
. . . . . . . 8
| |
| 83 | 82 | oveq1d 6665 |
. . . . . . 7
|
| 84 | mul02 10214 |
. . . . . . . 8
| |
| 85 | 84 | adantl 482 |
. . . . . . 7
|
| 86 | 83, 85 | eqtr3d 2658 |
. . . . . 6
|
| 87 | 77, 78, 79, 81, 86 | caofid2 6928 |
. . . . 5
|
| 88 | 87 | fveq2d 6195 |
. . . 4
|
| 89 | itg20 23504 |
. . . 4
| |
| 90 | 88, 89 | syl6eq 2672 |
. . 3
|
| 91 | 3 | adantr 481 |
. . . . 5
|
| 92 | 91 | recnd 10068 |
. . . 4
|
| 93 | 92 | mul02d 10234 |
. . 3
|
| 94 | simpr 477 |
. . . 4
| |
| 95 | 94 | oveq1d 6665 |
. . 3
|
| 96 | 90, 93, 95 | 3eqtr2d 2662 |
. 2
|
| 97 | 7 | simprd 479 |
. . 3
|
| 98 | leloe 10124 |
. . . 4
| |
| 99 | 80, 8, 98 | sylancr 695 |
. . 3
|
| 100 | 97, 99 | mpbid 222 |
. 2
|
| 101 | 76, 96, 100 | mpjaodan 827 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xadd 11947 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-xmet 19739 df-met 19740 df-ovol 23233 df-vol 23234 df-mbf 23388 df-itg1 23389 df-itg2 23390 df-0p 23437 |
| This theorem is referenced by: iblmulc2 23597 itgmulc2lem1 23598 bddmulibl 23605 iblmulc2nc 33475 itgmulc2nclem1 33476 |
| Copyright terms: Public domain | W3C validator |