MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulc Structured version   Visualization version   Unicode version

Theorem itg2mulc 23514
Description: The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itg2mulc.2  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
itg2mulc.3  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
itg2mulc.4  |-  ( ph  ->  A  e.  ( 0 [,) +oo ) )
Assertion
Ref Expression
itg2mulc  |-  ( ph  ->  ( S.2 `  (
( RR  X.  { A } )  oF  x.  F ) )  =  ( A  x.  ( S.2 `  F ) ) )

Proof of Theorem itg2mulc
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . 5  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
21adantr 481 . . . 4  |-  ( (
ph  /\  0  <  A )  ->  F : RR
--> ( 0 [,) +oo ) )
3 itg2mulc.3 . . . . 5  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
43adantr 481 . . . 4  |-  ( (
ph  /\  0  <  A )  ->  ( S.2 `  F )  e.  RR )
5 itg2mulc.4 . . . . . . . 8  |-  ( ph  ->  A  e.  ( 0 [,) +oo ) )
6 elrege0 12278 . . . . . . . 8  |-  ( A  e.  ( 0 [,) +oo )  <->  ( A  e.  RR  /\  0  <_  A ) )
75, 6sylib 208 . . . . . . 7  |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A )
)
87simpld 475 . . . . . 6  |-  ( ph  ->  A  e.  RR )
98anim1i 592 . . . . 5  |-  ( (
ph  /\  0  <  A )  ->  ( A  e.  RR  /\  0  < 
A ) )
10 elrp 11834 . . . . 5  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
119, 10sylibr 224 . . . 4  |-  ( (
ph  /\  0  <  A )  ->  A  e.  RR+ )
122, 4, 11itg2mulclem 23513 . . 3  |-  ( (
ph  /\  0  <  A )  ->  ( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  <_  ( A  x.  ( S.2 `  F
) ) )
13 ge0mulcl 12285 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  x.  y )  e.  ( 0 [,) +oo )
)
1413adantl 482 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo )
) )  ->  (
x  x.  y )  e.  ( 0 [,) +oo ) )
15 fconst6g 6094 . . . . . . . . 9  |-  ( A  e.  ( 0 [,) +oo )  ->  ( RR 
X.  { A }
) : RR --> ( 0 [,) +oo ) )
165, 15syl 17 . . . . . . . 8  |-  ( ph  ->  ( RR  X.  { A } ) : RR --> ( 0 [,) +oo ) )
17 reex 10027 . . . . . . . . 9  |-  RR  e.  _V
1817a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
19 inidm 3822 . . . . . . . 8  |-  ( RR 
i^i  RR )  =  RR
2014, 16, 1, 18, 18, 19off 6912 . . . . . . 7  |-  ( ph  ->  ( ( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,) +oo ) )
2120adantr 481 . . . . . 6  |-  ( (
ph  /\  0  <  A )  ->  ( ( RR  X.  { A }
)  oF  x.  F ) : RR --> ( 0 [,) +oo ) )
22 icossicc 12260 . . . . . . . . 9  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
23 fss 6056 . . . . . . . . 9  |-  ( ( ( ( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )  ->  (
( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,] +oo ) )
2420, 22, 23sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( ( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,] +oo ) )
2524adantr 481 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( ( RR  X.  { A }
)  oF  x.  F ) : RR --> ( 0 [,] +oo ) )
268, 3remulcld 10070 . . . . . . . 8  |-  ( ph  ->  ( A  x.  ( S.2 `  F ) )  e.  RR )
2726adantr 481 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( A  x.  ( S.2 `  F
) )  e.  RR )
28 itg2lecl 23505 . . . . . . 7  |-  ( ( ( ( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,] +oo )  /\  ( A  x.  ( S.2 `  F ) )  e.  RR  /\  ( S.2 `  ( ( RR 
X.  { A }
)  oF  x.  F ) )  <_ 
( A  x.  ( S.2 `  F ) ) )  ->  ( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  e.  RR )
2925, 27, 12, 28syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  0  <  A )  ->  ( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  e.  RR )
3011rpreccld 11882 . . . . . 6  |-  ( (
ph  /\  0  <  A )  ->  ( 1  /  A )  e.  RR+ )
3121, 29, 30itg2mulclem 23513 . . . . 5  |-  ( (
ph  /\  0  <  A )  ->  ( S.2 `  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  (
( RR  X.  { A } )  oF  x.  F ) ) )  <_  ( (
1  /  A )  x.  ( S.2 `  (
( RR  X.  { A } )  oF  x.  F ) ) ) )
322feqmptd 6249 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  F  =  ( y  e.  RR  |->  ( F `  y ) ) )
33 rge0ssre 12280 . . . . . . . . . . . . . 14  |-  ( 0 [,) +oo )  C_  RR
34 ax-resscn 9993 . . . . . . . . . . . . . 14  |-  RR  C_  CC
3533, 34sstri 3612 . . . . . . . . . . . . 13  |-  ( 0 [,) +oo )  C_  CC
36 fss 6056 . . . . . . . . . . . . 13  |-  ( ( F : RR --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  CC )  ->  F : RR --> CC )
371, 35, 36sylancl 694 . . . . . . . . . . . 12  |-  ( ph  ->  F : RR --> CC )
3837adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  F : RR
--> CC )
3938ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <  A )  /\  y  e.  RR )  ->  ( F `  y )  e.  CC )
4039mulid2d 10058 . . . . . . . . 9  |-  ( ( ( ph  /\  0  <  A )  /\  y  e.  RR )  ->  (
1  x.  ( F `
 y ) )  =  ( F `  y ) )
4140mpteq2dva 4744 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( y  e.  RR  |->  ( 1  x.  ( F `  y
) ) )  =  ( y  e.  RR  |->  ( F `  y ) ) )
4232, 41eqtr4d 2659 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  F  =  ( y  e.  RR  |->  ( 1  x.  ( F `  y )
) ) )
4317a1i 11 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  RR  e.  _V )
44 1red 10055 . . . . . . . 8  |-  ( ( ( ph  /\  0  <  A )  /\  y  e.  RR )  ->  1  e.  RR )
4543, 30, 11ofc12 6922 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  ( RR  X.  { A } ) )  =  ( RR  X.  {
( ( 1  /  A )  x.  A
) } ) )
46 fconstmpt 5163 . . . . . . . . . 10  |-  ( RR 
X.  { ( ( 1  /  A )  x.  A ) } )  =  ( y  e.  RR  |->  ( ( 1  /  A )  x.  A ) )
4745, 46syl6eq 2672 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  ( RR  X.  { A } ) )  =  ( y  e.  RR  |->  ( ( 1  /  A )  x.  A
) ) )
488recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
4948adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  A  e.  CC )
5011rpne0d 11877 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  A  =/=  0 )
5149, 50recid2d 10797 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  ( (
1  /  A )  x.  A )  =  1 )
5251mpteq2dv 4745 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  ( y  e.  RR  |->  ( ( 1  /  A )  x.  A ) )  =  ( y  e.  RR  |->  1 ) )
5347, 52eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  ( RR  X.  { A } ) )  =  ( y  e.  RR  |->  1 ) )
5443, 44, 39, 53, 32offval2 6914 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( (
( RR  X.  {
( 1  /  A
) } )  oF  x.  ( RR 
X.  { A }
) )  oF  x.  F )  =  ( y  e.  RR  |->  ( 1  x.  ( F `  y )
) ) )
5530rpcnd 11874 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  ( 1  /  A )  e.  CC )
56 fconst6g 6094 . . . . . . . . 9  |-  ( ( 1  /  A )  e.  CC  ->  ( RR  X.  { ( 1  /  A ) } ) : RR --> CC )
5755, 56syl 17 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( RR  X.  { ( 1  /  A ) } ) : RR --> CC )
58 fconst6g 6094 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( RR  X.  { A }
) : RR --> CC )
5949, 58syl 17 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( RR  X.  { A } ) : RR --> CC )
60 mulass 10024 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
6160adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  0  <  A )  /\  (
x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) ) )
6243, 57, 59, 38, 61caofass 6931 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( (
( RR  X.  {
( 1  /  A
) } )  oF  x.  ( RR 
X.  { A }
) )  oF  x.  F )  =  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  (
( RR  X.  { A } )  oF  x.  F ) ) )
6342, 54, 623eqtr2d 2662 . . . . . 6  |-  ( (
ph  /\  0  <  A )  ->  F  =  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  (
( RR  X.  { A } )  oF  x.  F ) ) )
6463fveq2d 6195 . . . . 5  |-  ( (
ph  /\  0  <  A )  ->  ( S.2 `  F )  =  ( S.2 `  ( ( RR  X.  { ( 1  /  A ) } )  oF  x.  ( ( RR 
X.  { A }
)  oF  x.  F ) ) ) )
6529recnd 10068 . . . . . 6  |-  ( (
ph  /\  0  <  A )  ->  ( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  e.  CC )
6665, 49, 50divrec2d 10805 . . . . 5  |-  ( (
ph  /\  0  <  A )  ->  ( ( S.2 `  ( ( RR 
X.  { A }
)  oF  x.  F ) )  /  A )  =  ( ( 1  /  A
)  x.  ( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) ) ) )
6731, 64, 663brtr4d 4685 . . . 4  |-  ( (
ph  /\  0  <  A )  ->  ( S.2 `  F )  <_  (
( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  /  A ) )
684, 29, 11lemuldiv2d 11922 . . . 4  |-  ( (
ph  /\  0  <  A )  ->  ( ( A  x.  ( S.2 `  F ) )  <_ 
( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  <-> 
( S.2 `  F )  <_  ( ( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  /  A ) ) )
6967, 68mpbird 247 . . 3  |-  ( (
ph  /\  0  <  A )  ->  ( A  x.  ( S.2 `  F
) )  <_  ( S.2 `  ( ( RR 
X.  { A }
)  oF  x.  F ) ) )
70 itg2cl 23499 . . . . . 6  |-  ( ( ( RR  X.  { A } )  oF  x.  F ) : RR --> ( 0 [,] +oo )  ->  ( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  e.  RR* )
7124, 70syl 17 . . . . 5  |-  ( ph  ->  ( S.2 `  (
( RR  X.  { A } )  oF  x.  F ) )  e.  RR* )
7226rexrd 10089 . . . . 5  |-  ( ph  ->  ( A  x.  ( S.2 `  F ) )  e.  RR* )
73 xrletri3 11985 . . . . 5  |-  ( ( ( S.2 `  (
( RR  X.  { A } )  oF  x.  F ) )  e.  RR*  /\  ( A  x.  ( S.2 `  F ) )  e. 
RR* )  ->  (
( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  =  ( A  x.  ( S.2 `  F ) )  <->  ( ( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  <_  ( A  x.  ( S.2 `  F
) )  /\  ( A  x.  ( S.2 `  F ) )  <_ 
( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) ) ) ) )
7471, 72, 73syl2anc 693 . . . 4  |-  ( ph  ->  ( ( S.2 `  (
( RR  X.  { A } )  oF  x.  F ) )  =  ( A  x.  ( S.2 `  F ) )  <->  ( ( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  <_  ( A  x.  ( S.2 `  F
) )  /\  ( A  x.  ( S.2 `  F ) )  <_ 
( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) ) ) ) )
7574adantr 481 . . 3  |-  ( (
ph  /\  0  <  A )  ->  ( ( S.2 `  ( ( RR 
X.  { A }
)  oF  x.  F ) )  =  ( A  x.  ( S.2 `  F ) )  <-> 
( ( S.2 `  (
( RR  X.  { A } )  oF  x.  F ) )  <_  ( A  x.  ( S.2 `  F ) )  /\  ( A  x.  ( S.2 `  F
) )  <_  ( S.2 `  ( ( RR 
X.  { A }
)  oF  x.  F ) ) ) ) )
7612, 69, 75mpbir2and 957 . 2  |-  ( (
ph  /\  0  <  A )  ->  ( S.2 `  ( ( RR  X.  { A } )  oF  x.  F ) )  =  ( A  x.  ( S.2 `  F
) ) )
7717a1i 11 . . . . . 6  |-  ( (
ph  /\  0  =  A )  ->  RR  e.  _V )
7837adantr 481 . . . . . 6  |-  ( (
ph  /\  0  =  A )  ->  F : RR --> CC )
798adantr 481 . . . . . 6  |-  ( (
ph  /\  0  =  A )  ->  A  e.  RR )
80 0re 10040 . . . . . . 7  |-  0  e.  RR
8180a1i 11 . . . . . 6  |-  ( (
ph  /\  0  =  A )  ->  0  e.  RR )
82 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  0  =  A )  /\  x  e.  CC )  ->  0  =  A )
8382oveq1d 6665 . . . . . . 7  |-  ( ( ( ph  /\  0  =  A )  /\  x  e.  CC )  ->  (
0  x.  x )  =  ( A  x.  x ) )
84 mul02 10214 . . . . . . . 8  |-  ( x  e.  CC  ->  (
0  x.  x )  =  0 )
8584adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  0  =  A )  /\  x  e.  CC )  ->  (
0  x.  x )  =  0 )
8683, 85eqtr3d 2658 . . . . . 6  |-  ( ( ( ph  /\  0  =  A )  /\  x  e.  CC )  ->  ( A  x.  x )  =  0 )
8777, 78, 79, 81, 86caofid2 6928 . . . . 5  |-  ( (
ph  /\  0  =  A )  ->  (
( RR  X.  { A } )  oF  x.  F )  =  ( RR  X.  {
0 } ) )
8887fveq2d 6195 . . . 4  |-  ( (
ph  /\  0  =  A )  ->  ( S.2 `  ( ( RR 
X.  { A }
)  oF  x.  F ) )  =  ( S.2 `  ( RR  X.  { 0 } ) ) )
89 itg20 23504 . . . 4  |-  ( S.2 `  ( RR  X.  {
0 } ) )  =  0
9088, 89syl6eq 2672 . . 3  |-  ( (
ph  /\  0  =  A )  ->  ( S.2 `  ( ( RR 
X.  { A }
)  oF  x.  F ) )  =  0 )
913adantr 481 . . . . 5  |-  ( (
ph  /\  0  =  A )  ->  ( S.2 `  F )  e.  RR )
9291recnd 10068 . . . 4  |-  ( (
ph  /\  0  =  A )  ->  ( S.2 `  F )  e.  CC )
9392mul02d 10234 . . 3  |-  ( (
ph  /\  0  =  A )  ->  (
0  x.  ( S.2 `  F ) )  =  0 )
94 simpr 477 . . . 4  |-  ( (
ph  /\  0  =  A )  ->  0  =  A )
9594oveq1d 6665 . . 3  |-  ( (
ph  /\  0  =  A )  ->  (
0  x.  ( S.2 `  F ) )  =  ( A  x.  ( S.2 `  F ) ) )
9690, 93, 953eqtr2d 2662 . 2  |-  ( (
ph  /\  0  =  A )  ->  ( S.2 `  ( ( RR 
X.  { A }
)  oF  x.  F ) )  =  ( A  x.  ( S.2 `  F ) ) )
977simprd 479 . . 3  |-  ( ph  ->  0  <_  A )
98 leloe 10124 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  ( 0  <  A  \/  0  =  A )
) )
9980, 8, 98sylancr 695 . . 3  |-  ( ph  ->  ( 0  <_  A  <->  ( 0  <  A  \/  0  =  A )
) )
10097, 99mpbid 222 . 2  |-  ( ph  ->  ( 0  <  A  \/  0  =  A
) )
10176, 96, 100mpjaodan 827 1  |-  ( ph  ->  ( S.2 `  (
( RR  X.  { A } )  oF  x.  F ) )  =  ( A  x.  ( S.2 `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   RR+crp 11832   [,)cico 12177   [,]cicc 12178   S.2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-0p 23437
This theorem is referenced by:  iblmulc2  23597  itgmulc2lem1  23598  bddmulibl  23605  iblmulc2nc  33475  itgmulc2nclem1  33476
  Copyright terms: Public domain W3C validator