MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0sr Structured version   Visualization version   Unicode version

Theorem mulgt0sr 9926
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulgt0sr  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) )

Proof of Theorem mulgt0sr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 9889 . . . . 5  |-  <R  C_  ( R.  X.  R. )
21brel 5168 . . . 4  |-  ( 0R 
<R  A  ->  ( 0R  e.  R.  /\  A  e.  R. ) )
32simprd 479 . . 3  |-  ( 0R 
<R  A  ->  A  e. 
R. )
41brel 5168 . . . 4  |-  ( 0R 
<R  B  ->  ( 0R  e.  R.  /\  B  e.  R. ) )
54simprd 479 . . 3  |-  ( 0R 
<R  B  ->  B  e. 
R. )
63, 5anim12i 590 . 2  |-  ( ( 0R  <R  A  /\  0R  <R  B )  -> 
( A  e.  R.  /\  B  e.  R. )
)
7 df-nr 9878 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
8 breq2 4657 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( 0R  <R  [ <. x ,  y >. ]  ~R  <->  0R 
<R  A ) )
98anbi1d 741 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. x ,  y >. ]  ~R  /\  0R  <R  [
<. z ,  w >. ]  ~R  )  <->  ( 0R  <R  A  /\  0R  <R  [
<. z ,  w >. ]  ~R  ) ) )
10 oveq1 6657 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  =  ( A  .R  [ <. z ,  w >. ]  ~R  ) )
1110breq2d 4665 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( 0R  <R  ( [ <. x ,  y
>. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  <->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  ) ) )
129, 11imbi12d 334 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( ( 0R 
<R  [ <. x ,  y
>. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  ) )  <-> 
( ( 0R  <R  A  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  )
) ) )
13 breq2 4657 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( 0R  <R  [ <. z ,  w >. ]  ~R  <->  0R 
<R  B ) )
1413anbi2d 740 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( 0R  <R  A  /\  0R  <R  [ <. z ,  w >. ]  ~R  ) 
<->  ( 0R  <R  A  /\  0R  <R  B ) ) )
15 oveq2 6658 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  .R  [ <. z ,  w >. ]  ~R  )  =  ( A  .R  B ) )
1615breq2d 4665 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( 0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  )  <->  0R 
<R  ( A  .R  B
) ) )
1714, 16imbi12d 334 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( ( 0R 
<R  A  /\  0R  <R  [
<. z ,  w >. ]  ~R  )  ->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  ) )  <->  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B
) ) ) )
18 gt0srpr 9899 . . . . 5  |-  ( 0R 
<R  [ <. x ,  y
>. ]  ~R  <->  y  <P  x )
19 gt0srpr 9899 . . . . 5  |-  ( 0R 
<R  [ <. z ,  w >. ]  ~R  <->  w  <P  z )
2018, 19anbi12i 733 . . . 4  |-  ( ( 0R  <R  [ <. x ,  y >. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  <->  ( y  <P  x  /\  w  <P  z ) )
21 simprr 796 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  w  e.  P. )
22 mulclpr 9842 . . . . . . . 8  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
23 mulclpr 9842 . . . . . . . 8  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
24 addclpr 9840 . . . . . . . 8  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
2522, 23, 24syl2an 494 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
2625an4s 869 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
27 ltexpri 9865 . . . . . . . . 9  |-  ( y 
<P  x  ->  E. v  e.  P.  ( y  +P.  v )  =  x )
28 ltexpri 9865 . . . . . . . . 9  |-  ( w 
<P  z  ->  E. u  e.  P.  ( w  +P.  u )  =  z )
29 mulclpr 9842 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  P.  /\  w  e.  P. )  ->  ( v  .P.  w
)  e.  P. )
30 oveq12 6659 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( y  +P.  v )  .P.  (
w  +P.  u )
)  =  ( x  .P.  z ) )
3130oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( ( y  +P.  v )  .P.  ( w  +P.  u
) )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) ) )
32 distrpr 9850 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  .P.  ( w  +P.  u ) )  =  ( ( y  .P.  w )  +P.  (
y  .P.  u )
)
33 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( w  +P.  u )  =  z  ->  (
y  .P.  ( w  +P.  u ) )  =  ( y  .P.  z
) )
3432, 33syl5eqr 2670 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( w  +P.  u )  =  z  ->  (
( y  .P.  w
)  +P.  ( y  .P.  u ) )  =  ( y  .P.  z
) )
3534oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( w  +P.  u )  =  z  ->  (
( ( y  .P.  w )  +P.  (
y  .P.  u )
)  +P.  ( (
v  .P.  w )  +P.  ( v  .P.  u
) ) )  =  ( ( y  .P.  z )  +P.  (
( v  .P.  w
)  +P.  ( v  .P.  u ) ) ) )
36 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  y  e. 
_V
37 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  v  e. 
_V
38 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  w  e. 
_V
39 mulcompr 9845 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  .P.  g )  =  ( g  .P.  f
)
40 distrpr 9850 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  .P.  ( g  +P.  h ) )  =  ( ( f  .P.  g )  +P.  (
f  .P.  h )
)
4136, 37, 38, 39, 40caovdir 6868 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  +P.  v )  .P.  w )  =  ( ( y  .P.  w )  +P.  (
v  .P.  w )
)
42 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  u  e. 
_V
4336, 37, 42, 39, 40caovdir 6868 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  +P.  v )  .P.  u )  =  ( ( y  .P.  u )  +P.  (
v  .P.  u )
)
4441, 43oveq12i 6662 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( y  +P.  v
)  .P.  w )  +P.  ( ( y  +P.  v )  .P.  u
) )  =  ( ( ( y  .P.  w )  +P.  (
v  .P.  w )
)  +P.  ( (
y  .P.  u )  +P.  ( v  .P.  u
) ) )
45 distrpr 9850 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  +P.  v )  .P.  ( w  +P.  u ) )  =  ( ( ( y  +P.  v )  .P.  w )  +P.  (
( y  +P.  v
)  .P.  u )
)
46 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  .P.  w )  e. 
_V
47 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  .P.  u )  e. 
_V
48 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  .P.  w )  e. 
_V
49 addcompr 9843 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  +P.  g )  =  ( g  +P.  f
)
50 addasspr 9844 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  +P.  g )  +P.  h )  =  ( f  +P.  (
g  +P.  h )
)
51 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  .P.  u )  e. 
_V
5246, 47, 48, 49, 50, 51caov4 6865 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( y  .P.  w
)  +P.  ( y  .P.  u ) )  +P.  ( ( v  .P.  w )  +P.  (
v  .P.  u )
) )  =  ( ( ( y  .P.  w )  +P.  (
v  .P.  w )
)  +P.  ( (
y  .P.  u )  +P.  ( v  .P.  u
) ) )
5344, 45, 523eqtr4i 2654 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  +P.  v )  .P.  ( w  +P.  u ) )  =  ( ( ( y  .P.  w )  +P.  ( y  .P.  u
) )  +P.  (
( v  .P.  w
)  +P.  ( v  .P.  u ) ) )
54 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  .P.  z )  e. 
_V
5548, 54, 51, 49, 50caov12 6862 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) )  =  ( ( y  .P.  z )  +P.  (
( v  .P.  w
)  +P.  ( v  .P.  u ) ) )
5635, 53, 553eqtr4g 2681 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( w  +P.  u )  =  z  ->  (
( y  +P.  v
)  .P.  ( w  +P.  u ) )  =  ( ( v  .P.  w )  +P.  (
( y  .P.  z
)  +P.  ( v  .P.  u ) ) ) )
57 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  +P.  v )  =  x  ->  (
( y  +P.  v
)  .P.  w )  =  ( x  .P.  w ) )
5841, 57syl5eqr 2670 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  +P.  v )  =  x  ->  (
( y  .P.  w
)  +P.  ( v  .P.  w ) )  =  ( x  .P.  w
) )
5956, 58oveqan12rd 6670 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( ( y  +P.  v )  .P.  ( w  +P.  u
) )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( ( v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) ) )
6031, 59eqtr3d 2658 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( x  .P.  z )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( ( v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) ) )
61 addasspr 9844 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  +P.  ( v  .P.  w
) )  =  ( ( x  .P.  z
)  +P.  ( (
y  .P.  w )  +P.  ( v  .P.  w
) ) )
62 addcompr 9843 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  +P.  ( v  .P.  w
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  z )  +P.  ( y  .P.  w
) ) )
6361, 62eqtr3i 2646 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  ( v  .P.  w
) ) )  =  ( ( v  .P.  w )  +P.  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
64 addasspr 9844 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( v  .P.  w
)  +P.  ( x  .P.  w ) )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  w )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) ) )
65 ovex 6678 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  .P.  z )  +P.  ( v  .P.  u ) )  e. 
_V
66 ovex 6678 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  .P.  w )  e. 
_V
6748, 65, 66, 49, 50caov32 6861 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) )  =  ( ( ( v  .P.  w )  +P.  (
x  .P.  w )
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )
68 addasspr 9844 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )
6968oveq2i 6661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( v  .P.  w )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )  =  ( ( v  .P.  w )  +P.  (
( x  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
7064, 67, 693eqtr4i 2654 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )
7160, 63, 703eqtr3g 2679 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( v  .P.  w )  +P.  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )  =  ( ( v  .P.  w )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
) ) )
72 addcanpr 9868 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( v  .P.  w )  +P.  ( ( x  .P.  z )  +P.  (
y  .P.  w )
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )  -> 
( ( x  .P.  z )  +P.  (
y  .P.  w )
)  =  ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) ) )
7371, 72syl5 34 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
) ) )
74 eqcom 2629 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
)  <->  ( ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
75 ltaddpr2 9857 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  ->  ( ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  -> 
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
7674, 75syl5bi 232 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  ->  ( ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
7776adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) )  -> 
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
7873, 77syld 47 . . . . . . . . . . . . . . . . 17  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
7929, 78sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
8079a1d 25 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( u  e.  P.  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) ) )
8180exp4a 633 . . . . . . . . . . . . . 14  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( u  e.  P.  ->  ( ( y  +P.  v )  =  x  ->  ( ( w  +P.  u )  =  z  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) ) )
8281com34 91 . . . . . . . . . . . . 13  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( u  e.  P.  ->  ( ( w  +P.  u )  =  z  ->  ( ( y  +P.  v )  =  x  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) ) )
8382rexlimdv 3030 . . . . . . . . . . . 12  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( y  +P.  v )  =  x  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) )
8483expl 648 . . . . . . . . . . 11  |-  ( v  e.  P.  ->  (
( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( y  +P.  v )  =  x  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) ) )
8584com24 95 . . . . . . . . . 10  |-  ( v  e.  P.  ->  (
( y  +P.  v
)  =  x  -> 
( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( w  e.  P.  /\  (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P. )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) ) ) )
8685rexlimiv 3027 . . . . . . . . 9  |-  ( E. v  e.  P.  (
y  +P.  v )  =  x  ->  ( E. u  e.  P.  (
w  +P.  u )  =  z  ->  ( ( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) ) )
8727, 28, 86syl2im 40 . . . . . . . 8  |-  ( y 
<P  x  ->  ( w 
<P  z  ->  ( ( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) ) )
8887imp 445 . . . . . . 7  |-  ( ( y  <P  x  /\  w  <P  z )  -> 
( ( w  e. 
P.  /\  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )  ->  ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
8988com12 32 . . . . . 6  |-  ( ( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( y  <P  x  /\  w  <P  z
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
9021, 26, 89syl2anc 693 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  <P  x  /\  w  <P  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
91 mulsrpr 9897 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
9291breq2d 4665 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( 0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  <->  0R  <R  [
<. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  ) )
93 gt0srpr 9899 . . . . . 6  |-  ( 0R 
<R  [ <. ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ,  ( ( x  .P.  w
)  +P.  ( y  .P.  z ) ) >. ]  ~R  <->  ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
9492, 93syl6bb 276 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( 0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  <->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
9590, 94sylibrd 249 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  <P  x  /\  w  <P  z )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  ) ) )
9620, 95syl5bi 232 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( ( 0R  <R  [ <. x ,  y >. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  ) ) )
977, 12, 17, 962ecoptocl 7838 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) ) )
986, 97mpcom 38 1  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   <.cop 4183   class class class wbr 4653  (class class class)co 6650   [cec 7740   P.cnp 9681    +P. cpp 9683    .P. cmp 9684    <P cltp 9685    ~R cer 9686   R.cnr 9687   0Rc0r 9688    .R cmr 9692    <R cltr 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-1p 9804  df-plp 9805  df-mp 9806  df-ltp 9807  df-enr 9877  df-nr 9878  df-mr 9880  df-ltr 9881  df-0r 9882
This theorem is referenced by:  sqgt0sr  9927  axpre-mulgt0  9989
  Copyright terms: Public domain W3C validator