MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prlem934 Structured version   Visualization version   Unicode version

Theorem prlem934 9855
Description: Lemma 9-3.4 of [Gleason] p. 122. (Contributed by NM, 25-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
prlem934.1  |-  B  e. 
_V
Assertion
Ref Expression
prlem934  |-  ( A  e.  P.  ->  E. x  e.  A  -.  (
x  +Q  B )  e.  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem prlem934
Dummy variables  b  w  y  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 9811 . . . . 5  |-  ( A  e.  P.  ->  A  =/=  (/) )
2 r19.2z 4060 . . . . . 6  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  (
x  +Q  B )  e.  A )  ->  E. x  e.  A  ( x  +Q  B
)  e.  A )
32ex 450 . . . . 5  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  (
x  +Q  B )  e.  A  ->  E. x  e.  A  ( x  +Q  B )  e.  A
) )
41, 3syl 17 . . . 4  |-  ( A  e.  P.  ->  ( A. x  e.  A  ( x  +Q  B
)  e.  A  ->  E. x  e.  A  ( x  +Q  B
)  e.  A ) )
5 prpssnq 9812 . . . . . . . . 9  |-  ( A  e.  P.  ->  A  C. 
Q. )
65pssssd 3704 . . . . . . . 8  |-  ( A  e.  P.  ->  A  C_ 
Q. )
76sseld 3602 . . . . . . 7  |-  ( A  e.  P.  ->  (
( x  +Q  B
)  e.  A  -> 
( x  +Q  B
)  e.  Q. )
)
8 addnqf 9770 . . . . . . . . . 10  |-  +Q  :
( Q.  X.  Q. )
--> Q.
98fdmi 6052 . . . . . . . . 9  |-  dom  +Q  =  ( Q.  X.  Q. )
10 0nnq 9746 . . . . . . . . 9  |-  -.  (/)  e.  Q.
119, 10ndmovrcl 6820 . . . . . . . 8  |-  ( ( x  +Q  B )  e.  Q.  ->  (
x  e.  Q.  /\  B  e.  Q. )
)
1211simprd 479 . . . . . . 7  |-  ( ( x  +Q  B )  e.  Q.  ->  B  e.  Q. )
137, 12syl6com 37 . . . . . 6  |-  ( ( x  +Q  B )  e.  A  ->  ( A  e.  P.  ->  B  e.  Q. ) )
1413rexlimivw 3029 . . . . 5  |-  ( E. x  e.  A  ( x  +Q  B )  e.  A  ->  ( A  e.  P.  ->  B  e.  Q. ) )
1514com12 32 . . . 4  |-  ( A  e.  P.  ->  ( E. x  e.  A  ( x  +Q  B
)  e.  A  ->  B  e.  Q. )
)
16 oveq2 6658 . . . . . . . . . 10  |-  ( b  =  B  ->  (
x  +Q  b )  =  ( x  +Q  B ) )
1716eleq1d 2686 . . . . . . . . 9  |-  ( b  =  B  ->  (
( x  +Q  b
)  e.  A  <->  ( x  +Q  B )  e.  A
) )
1817ralbidv 2986 . . . . . . . 8  |-  ( b  =  B  ->  ( A. x  e.  A  ( x  +Q  b
)  e.  A  <->  A. x  e.  A  ( x  +Q  B )  e.  A
) )
1918notbid 308 . . . . . . 7  |-  ( b  =  B  ->  ( -.  A. x  e.  A  ( x  +Q  b
)  e.  A  <->  -.  A. x  e.  A  ( x  +Q  B )  e.  A
) )
2019imbi2d 330 . . . . . 6  |-  ( b  =  B  ->  (
( A  e.  P.  ->  -.  A. x  e.  A  ( x  +Q  b )  e.  A
)  <->  ( A  e. 
P.  ->  -.  A. x  e.  A  ( x  +Q  B )  e.  A
) ) )
21 dfpss2 3692 . . . . . . . . . . 11  |-  ( A 
C.  Q.  <->  ( A  C_  Q.  /\  -.  A  =  Q. ) )
225, 21sylib 208 . . . . . . . . . 10  |-  ( A  e.  P.  ->  ( A  C_  Q.  /\  -.  A  =  Q. )
)
2322simprd 479 . . . . . . . . 9  |-  ( A  e.  P.  ->  -.  A  =  Q. )
2423adantr 481 . . . . . . . 8  |-  ( ( A  e.  P.  /\  b  e.  Q. )  ->  -.  A  =  Q. )
2563ad2ant1 1082 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  (
x  +Q  b )  e.  A )  ->  A  C_  Q. )
26 simpl1 1064 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  w  e.  Q. )  ->  A  e.  P. )
27 n0 3931 . . . . . . . . . . . . . . 15  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
281, 27sylib 208 . . . . . . . . . . . . . 14  |-  ( A  e.  P.  ->  E. y 
y  e.  A )
2926, 28syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  w  e.  Q. )  ->  E. y  y  e.  A )
30 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  ( w  e.  Q.  /\  y  e.  A ) )  ->  w  e.  Q. )
31 simpl2 1065 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  ( w  e.  Q.  /\  y  e.  A ) )  ->  b  e.  Q. )
32 recclnq 9788 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  Q.  ->  ( *Q `  b )  e. 
Q. )
33 mulclnq 9769 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  Q.  /\  ( *Q `  b )  e.  Q. )  -> 
( w  .Q  ( *Q `  b ) )  e.  Q. )
34 archnq 9802 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  .Q  ( *Q
`  b ) )  e.  Q.  ->  E. z  e.  N.  ( w  .Q  ( *Q `  b ) )  <Q  <. z ,  1o >. )
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  Q.  /\  ( *Q `  b )  e.  Q. )  ->  E. z  e.  N.  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. )
3632, 35sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  Q.  /\  b  e.  Q. )  ->  E. z  e.  N.  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. )
3730, 31, 36syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  ( w  e.  Q.  /\  y  e.  A ) )  ->  E. z  e.  N.  ( w  .Q  ( *Q `  b ) )  <Q  <. z ,  1o >. )
38 simpll2 1101 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  b  e.  Q. )
39 simplrl 800 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  w  e.  Q. )
40 simprr 796 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  (
w  .Q  ( *Q
`  b ) ) 
<Q  <. z ,  1o >. )
41 ltmnq 9794 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  e.  Q.  ->  (
( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >.  <-> 
( b  .Q  (
w  .Q  ( *Q
`  b ) ) )  <Q  ( b  .Q  <. z ,  1o >. ) ) )
42 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  b  e. 
_V
43 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  w  e. 
_V
44 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( *Q
`  b )  e. 
_V
45 mulcomnq 9775 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  .Q  x )  =  ( x  .Q  v
)
46 mulassnq 9781 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( v  .Q  x )  .Q  y )  =  ( v  .Q  (
x  .Q  y ) )
4742, 43, 44, 45, 46caov12 6862 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  .Q  ( w  .Q  ( *Q `  b ) ) )  =  ( w  .Q  ( b  .Q  ( *Q `  b ) ) )
48 mulcomnq 9775 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  .Q  <. z ,  1o >. )  =  ( <.
z ,  1o >.  .Q  b )
4947, 48breq12i 4662 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b  .Q  ( w  .Q  ( *Q `  b ) ) ) 
<Q  ( b  .Q  <. z ,  1o >. )  <->  ( w  .Q  ( b  .Q  ( *Q `  b ) ) ) 
<Q  ( <. z ,  1o >.  .Q  b ) )
5041, 49syl6bb 276 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( b  e.  Q.  ->  (
( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >.  <-> 
( w  .Q  (
b  .Q  ( *Q
`  b ) ) )  <Q  ( <. z ,  1o >.  .Q  b
) ) )
5150adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  e.  Q.  /\  w  e.  Q. )  ->  ( ( w  .Q  ( *Q `  b ) )  <Q  <. z ,  1o >.  <->  ( w  .Q  ( b  .Q  ( *Q `  b ) ) )  <Q  ( <. z ,  1o >.  .Q  b
) ) )
52 recidnq 9787 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  e.  Q.  ->  (
b  .Q  ( *Q
`  b ) )  =  1Q )
5352oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  e.  Q.  ->  (
w  .Q  ( b  .Q  ( *Q `  b ) ) )  =  ( w  .Q  1Q ) )
54 mulidnq 9785 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  Q.  ->  (
w  .Q  1Q )  =  w )
5553, 54sylan9eq 2676 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( b  e.  Q.  /\  w  e.  Q. )  ->  ( w  .Q  (
b  .Q  ( *Q
`  b ) ) )  =  w )
5655breq1d 4663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  e.  Q.  /\  w  e.  Q. )  ->  ( ( w  .Q  ( b  .Q  ( *Q `  b ) ) )  <Q  ( <. z ,  1o >.  .Q  b
)  <->  w  <Q  ( <.
z ,  1o >.  .Q  b ) ) )
5751, 56bitrd 268 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  Q.  /\  w  e.  Q. )  ->  ( ( w  .Q  ( *Q `  b ) )  <Q  <. z ,  1o >.  <->  w  <Q  ( <.
z ,  1o >.  .Q  b ) ) )
5857biimpa 501 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  Q.  /\  w  e.  Q. )  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. )  ->  w  <Q  (
<. z ,  1o >.  .Q  b ) )
5938, 39, 40, 58syl21anc 1325 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  w  <Q  ( <. z ,  1o >.  .Q  b ) )
60 simprl 794 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  z  e.  N. )
61 pinq 9749 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  N.  ->  <. z ,  1o >.  e.  Q. )
62 mulclnq 9769 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. z ,  1o >.  e. 
Q.  /\  b  e.  Q. )  ->  ( <.
z ,  1o >.  .Q  b )  e.  Q. )
6361, 62sylan 488 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( <. z ,  1o >.  .Q  b )  e. 
Q. )
6460, 38, 63syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  ( <. z ,  1o >.  .Q  b )  e.  Q. )
65 simpll1 1100 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  A  e.  P. )
66 simplrr 801 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  y  e.  A )
67 elprnq 9813 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  P.  /\  y  e.  A )  ->  y  e.  Q. )
6865, 66, 67syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  y  e.  Q. )
69 ltaddnq 9796 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( <. z ,  1o >.  .Q  b )  e. 
Q.  /\  y  e.  Q. )  ->  ( <.
z ,  1o >.  .Q  b )  <Q  (
( <. z ,  1o >.  .Q  b )  +Q  y ) )
70 addcomnq 9773 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<. z ,  1o >.  .Q  b )  +Q  y
)  =  ( y  +Q  ( <. z ,  1o >.  .Q  b
) )
7169, 70syl6breq 4694 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( <. z ,  1o >.  .Q  b )  e. 
Q.  /\  y  e.  Q. )  ->  ( <.
z ,  1o >.  .Q  b )  <Q  (
y  +Q  ( <.
z ,  1o >.  .Q  b ) ) )
7264, 68, 71syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  ( <. z ,  1o >.  .Q  b )  <Q  (
y  +Q  ( <.
z ,  1o >.  .Q  b ) ) )
73 ltsonq 9791 . . . . . . . . . . . . . . . . . . 19  |-  <Q  Or  Q.
74 ltrelnq 9748 . . . . . . . . . . . . . . . . . . 19  |-  <Q  C_  ( Q.  X.  Q. )
7573, 74sotri 5523 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  <Q  ( <. z ,  1o >.  .Q  b
)  /\  ( <. z ,  1o >.  .Q  b
)  <Q  ( y  +Q  ( <. z ,  1o >.  .Q  b ) ) )  ->  w  <Q  ( y  +Q  ( <.
z ,  1o >.  .Q  b ) ) )
7659, 72, 75syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  w  <Q  ( y  +Q  ( <. z ,  1o >.  .Q  b ) ) )
77 simpll3 1102 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  A. x  e.  A  ( x  +Q  b )  e.  A
)
78 opeq1 4402 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  =  1o  ->  <. w ,  1o >.  =  <. 1o ,  1o >. )
79 df-1nq 9738 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  1Q  =  <. 1o ,  1o >.
8078, 79syl6eqr 2674 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  1o  ->  <. w ,  1o >.  =  1Q )
8180oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  1o  ->  ( <. w ,  1o >.  .Q  b )  =  ( 1Q  .Q  b ) )
8281oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  1o  ->  (
y  +Q  ( <.
w ,  1o >.  .Q  b ) )  =  ( y  +Q  ( 1Q  .Q  b ) ) )
8382eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  1o  ->  (
( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A  <->  ( y  +Q  ( 1Q  .Q  b
) )  e.  A
) )
8483imbi2d 330 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  1o  ->  (
( ( b  e. 
Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A
)  ->  ( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A )  <->  ( (
b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A )  ->  (
y  +Q  ( 1Q 
.Q  b ) )  e.  A ) ) )
85 opeq1 4402 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  z  ->  <. w ,  1o >.  =  <. z ,  1o >. )
8685oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  z  ->  ( <. w ,  1o >.  .Q  b )  =  (
<. z ,  1o >.  .Q  b ) )
8786oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  z  ->  (
y  +Q  ( <.
w ,  1o >.  .Q  b ) )  =  ( y  +Q  ( <. z ,  1o >.  .Q  b ) ) )
8887eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  z  ->  (
( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A  <->  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A ) )
8988imbi2d 330 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  z  ->  (
( ( b  e. 
Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A
)  ->  ( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A )  <->  ( (
b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A )  ->  (
y  +Q  ( <.
z ,  1o >.  .Q  b ) )  e.  A ) ) )
90 opeq1 4402 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( z  +N  1o )  ->  <. w ,  1o >.  =  <. ( z  +N  1o ) ,  1o >. )
9190oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( z  +N  1o )  ->  ( <. w ,  1o >.  .Q  b )  =  (
<. ( z  +N  1o ) ,  1o >.  .Q  b
) )
9291oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( z  +N  1o )  ->  (
y  +Q  ( <.
w ,  1o >.  .Q  b ) )  =  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b
) ) )
9392eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  ( z  +N  1o )  ->  (
( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A  <->  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b ) )  e.  A ) )
9493imbi2d 330 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  ( z  +N  1o )  ->  (
( ( b  e. 
Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A
)  ->  ( y  +Q  ( <. w ,  1o >.  .Q  b ) )  e.  A )  <->  ( (
b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A )  ->  (
y  +Q  ( <.
( z  +N  1o ) ,  1o >.  .Q  b
) )  e.  A
) ) )
95 mulcomnq 9775 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1Q 
.Q  b )  =  ( b  .Q  1Q )
96 mulidnq 9785 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  e.  Q.  ->  (
b  .Q  1Q )  =  b )
9795, 96syl5eq 2668 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  e.  Q.  ->  ( 1Q  .Q  b )  =  b )
98 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  y  ->  (
x  +Q  b )  =  ( y  +Q  b ) )
9998eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  y  ->  (
( x  +Q  b
)  e.  A  <->  ( y  +Q  b )  e.  A
) )
10099rspccva 3308 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A. x  e.  A  ( x  +Q  b
)  e.  A  /\  y  e.  A )  ->  ( y  +Q  b
)  e.  A )
101 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 1Q  .Q  b )  =  b  ->  (
y  +Q  ( 1Q 
.Q  b ) )  =  ( y  +Q  b ) )
102101eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1Q  .Q  b )  =  b  ->  (
( y  +Q  ( 1Q  .Q  b ) )  e.  A  <->  ( y  +Q  b )  e.  A
) )
103102biimpar 502 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1Q  .Q  b
)  =  b  /\  ( y  +Q  b
)  e.  A )  ->  ( y  +Q  ( 1Q  .Q  b
) )  e.  A
)
10497, 100, 103syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( b  e.  Q.  /\  ( A. x  e.  A  ( x  +Q  b
)  e.  A  /\  y  e.  A )
)  ->  ( y  +Q  ( 1Q  .Q  b
) )  e.  A
)
1051043impb 1260 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A )  ->  (
y  +Q  ( 1Q 
.Q  b ) )  e.  A )
106 3simpa 1058 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A )  ->  (
b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A ) )
107 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  ->  ( x  +Q  b )  =  ( ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  +Q  b ) )
108107eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  ->  ( ( x  +Q  b )  e.  A  <->  ( ( y  +Q  ( <. z ,  1o >.  .Q  b
) )  +Q  b
)  e.  A ) )
109108rspccva 3308 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A. x  e.  A  ( x  +Q  b
)  e.  A  /\  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A )  ->  (
( y  +Q  ( <. z ,  1o >.  .Q  b ) )  +Q  b )  e.  A
)
110 addassnq 9780 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  +Q  ( <.
z ,  1o >.  .Q  b ) )  +Q  b )  =  ( y  +Q  ( (
<. z ,  1o >.  .Q  b )  +Q  b
) )
111 opex 4932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  <. z ,  1o >.  e.  _V
112 1nq 9750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  1Q  e.  Q.
113112elexi 3213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  1Q  e.  _V
114 distrnq 9783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( v  .Q  ( x  +Q  y ) )  =  ( ( v  .Q  x )  +Q  (
v  .Q  y ) )
115111, 113, 42, 45, 114caovdir 6868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
<. z ,  1o >.  +Q  1Q )  .Q  b
)  =  ( (
<. z ,  1o >.  .Q  b )  +Q  ( 1Q  .Q  b ) )
116115a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( <. z ,  1o >.  +Q  1Q )  .Q  b )  =  ( ( <. z ,  1o >.  .Q  b
)  +Q  ( 1Q 
.Q  b ) ) )
117 addpqnq 9760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
<. z ,  1o >.  e. 
Q.  /\  1Q  e.  Q. )  ->  ( <.
z ,  1o >.  +Q  1Q )  =  ( /Q `  ( <.
z ,  1o >.  +pQ 
1Q ) ) )
11861, 112, 117sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  e.  N.  ->  ( <. z ,  1o >.  +Q  1Q )  =  ( /Q `  ( <.
z ,  1o >.  +pQ 
1Q ) ) )
11979oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( <.
z ,  1o >.  +pQ 
1Q )  =  (
<. z ,  1o >.  +pQ 
<. 1o ,  1o >. )
120 1pi 9705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  1o  e.  N.
121 addpipq 9759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( z  e.  N.  /\  1o  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( <. z ,  1o >.  +pQ  <. 1o ,  1o >. )  =  <. ( ( z  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. )
122120, 120, 121mpanr12 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( <. z ,  1o >.  +pQ  <. 1o ,  1o >. )  =  <. (
( z  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. )
123120, 122mpan2 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( z  e.  N.  ->  ( <. z ,  1o >.  +pQ 
<. 1o ,  1o >. )  =  <. ( ( z  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. )
124119, 123syl5eq 2668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( z  e.  N.  ->  ( <. z ,  1o >.  +pQ 
1Q )  =  <. ( ( z  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. )
125 mulidpi 9708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( z  e.  N.  ->  (
z  .N  1o )  =  z )
126 mulidpi 9708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( 1o  e.  N.  ->  ( 1o  .N  1o )  =  1o )
127120, 126mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( z  e.  N.  ->  ( 1o  .N  1o )  =  1o )
128125, 127oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( z  e.  N.  ->  (
( z  .N  1o )  +N  ( 1o  .N  1o ) )  =  ( z  +N  1o ) )
129128, 127opeq12d 4410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( z  e.  N.  ->  <. (
( z  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>.  =  <. ( z  +N  1o ) ,  1o >. )
130124, 129eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( z  e.  N.  ->  ( <. z ,  1o >.  +pQ 
1Q )  =  <. ( z  +N  1o ) ,  1o >. )
131130fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  e.  N.  ->  ( /Q `  ( <. z ,  1o >.  +pQ  1Q ) )  =  ( /Q
`  <. ( z  +N  1o ) ,  1o >. ) )
132 addclpi 9714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  e.  N. )
133120, 132mpan2 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( z  e.  N.  ->  (
z  +N  1o )  e.  N. )
134 pinq 9749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( z  +N  1o )  e.  N.  ->  <. (
z  +N  1o ) ,  1o >.  e.  Q. )
135 nqerid 9755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( <.
( z  +N  1o ) ,  1o >.  e.  Q.  ->  ( /Q `  <. ( z  +N  1o ) ,  1o >. )  =  <. ( z  +N  1o ) ,  1o >. )
136133, 134, 1353syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  e.  N.  ->  ( /Q `  <. ( z  +N  1o ) ,  1o >. )  =  <. (
z  +N  1o ) ,  1o >. )
137118, 131, 1363eqtrd 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( z  e.  N.  ->  ( <. z ,  1o >.  +Q  1Q )  =  <. ( z  +N  1o ) ,  1o >. )
138137adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( <. z ,  1o >.  +Q  1Q )  = 
<. ( z  +N  1o ) ,  1o >. )
139138oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( <. z ,  1o >.  +Q  1Q )  .Q  b )  =  ( <. ( z  +N  1o ) ,  1o >.  .Q  b ) )
14097adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( 1Q  .Q  b
)  =  b )
141140oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( <. z ,  1o >.  .Q  b
)  +Q  ( 1Q 
.Q  b ) )  =  ( ( <.
z ,  1o >.  .Q  b )  +Q  b
) )
142116, 139, 1413eqtr3rd 2665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( <. z ,  1o >.  .Q  b
)  +Q  b )  =  ( <. (
z  +N  1o ) ,  1o >.  .Q  b
) )
143142oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( y  +Q  (
( <. z ,  1o >.  .Q  b )  +Q  b ) )  =  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b
) ) )
144110, 143syl5eq 2668 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  +Q  b )  =  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b
) ) )
145144eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( ( y  +Q  ( <. z ,  1o >.  .Q  b
) )  +Q  b
)  e.  A  <->  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b ) )  e.  A ) )
146109, 145syl5ib 234 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( ( A. x  e.  A  ( x  +Q  b )  e.  A  /\  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A )  ->  (
y  +Q  ( <.
( z  +N  1o ) ,  1o >.  .Q  b
) )  e.  A
) )
147146expd 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  N.  /\  b  e.  Q. )  ->  ( A. x  e.  A  ( x  +Q  b )  e.  A  ->  ( ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A  ->  (
y  +Q  ( <.
( z  +N  1o ) ,  1o >.  .Q  b
) )  e.  A
) ) )
148147expimpd 629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  N.  ->  (
( b  e.  Q.  /\ 
A. x  e.  A  ( x  +Q  b
)  e.  A )  ->  ( ( y  +Q  ( <. z ,  1o >.  .Q  b
) )  e.  A  ->  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b
) )  e.  A
) ) )
149106, 148syl5 34 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  N.  ->  (
( b  e.  Q.  /\ 
A. x  e.  A  ( x  +Q  b
)  e.  A  /\  y  e.  A )  ->  ( ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A  ->  (
y  +Q  ( <.
( z  +N  1o ) ,  1o >.  .Q  b
) )  e.  A
) ) )
150149a2d 29 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  N.  ->  (
( ( b  e. 
Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A
)  ->  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A )  -> 
( ( b  e. 
Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A  /\  y  e.  A
)  ->  ( y  +Q  ( <. ( z  +N  1o ) ,  1o >.  .Q  b ) )  e.  A ) ) )
15184, 89, 94, 89, 105, 150indpi 9729 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  N.  ->  (
( b  e.  Q.  /\ 
A. x  e.  A  ( x  +Q  b
)  e.  A  /\  y  e.  A )  ->  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A ) )
152151imp 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  N.  /\  ( b  e.  Q.  /\ 
A. x  e.  A  ( x  +Q  b
)  e.  A  /\  y  e.  A )
)  ->  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A )
15360, 38, 77, 66, 152syl13anc 1328 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  (
y  +Q  ( <.
z ,  1o >.  .Q  b ) )  e.  A )
154 prcdnq 9815 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  P.  /\  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  e.  A )  ->  (
w  <Q  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  ->  w  e.  A
) )
15565, 153, 154syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  (
w  <Q  ( y  +Q  ( <. z ,  1o >.  .Q  b ) )  ->  w  e.  A
) )
15676, 155mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A
)  /\  ( w  e.  Q.  /\  y  e.  A ) )  /\  ( z  e.  N.  /\  ( w  .Q  ( *Q `  b ) ) 
<Q  <. z ,  1o >. ) )  ->  w  e.  A )
15737, 156rexlimddv 3035 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  ( w  e.  Q.  /\  y  e.  A ) )  ->  w  e.  A )
158157expr 643 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  w  e.  Q. )  ->  ( y  e.  A  ->  w  e.  A ) )
159158exlimdv 1861 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  w  e.  Q. )  ->  ( E. y  y  e.  A  ->  w  e.  A ) )
16029, 159mpd 15 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  ( x  +Q  b )  e.  A )  /\  w  e.  Q. )  ->  w  e.  A )
161160ex 450 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  (
x  +Q  b )  e.  A )  -> 
( w  e.  Q.  ->  w  e.  A ) )
162161ssrdv 3609 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  (
x  +Q  b )  e.  A )  ->  Q.  C_  A )
16325, 162eqssd 3620 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  b  e.  Q.  /\  A. x  e.  A  (
x  +Q  b )  e.  A )  ->  A  =  Q. )
1641633expia 1267 . . . . . . . 8  |-  ( ( A  e.  P.  /\  b  e.  Q. )  ->  ( A. x  e.  A  ( x  +Q  b )  e.  A  ->  A  =  Q. )
)
16524, 164mtod 189 . . . . . . 7  |-  ( ( A  e.  P.  /\  b  e.  Q. )  ->  -.  A. x  e.  A  ( x  +Q  b )  e.  A
)
166165expcom 451 . . . . . 6  |-  ( b  e.  Q.  ->  ( A  e.  P.  ->  -. 
A. x  e.  A  ( x  +Q  b
)  e.  A ) )
16720, 166vtoclga 3272 . . . . 5  |-  ( B  e.  Q.  ->  ( A  e.  P.  ->  -. 
A. x  e.  A  ( x  +Q  B
)  e.  A ) )
168167com12 32 . . . 4  |-  ( A  e.  P.  ->  ( B  e.  Q.  ->  -. 
A. x  e.  A  ( x  +Q  B
)  e.  A ) )
1694, 15, 1683syld 60 . . 3  |-  ( A  e.  P.  ->  ( A. x  e.  A  ( x  +Q  B
)  e.  A  ->  -.  A. x  e.  A  ( x  +Q  B
)  e.  A ) )
170169pm2.01d 181 . 2  |-  ( A  e.  P.  ->  -.  A. x  e.  A  ( x  +Q  B )  e.  A )
171 rexnal 2995 . 2  |-  ( E. x  e.  A  -.  ( x  +Q  B
)  e.  A  <->  -.  A. x  e.  A  ( x  +Q  B )  e.  A
)
172170, 171sylibr 224 1  |-  ( A  e.  P.  ->  E. x  e.  A  -.  (
x  +Q  B )  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574    C. wpss 3575   (/)c0 3915   <.cop 4183   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1oc1o 7553   N.cnpi 9666    +N cpli 9667    .N cmi 9668    +pQ cplpq 9670   Q.cnq 9674   1Qc1q 9675   /Qcerq 9676    +Q cplq 9677    .Q cmq 9678   *Qcrq 9679    <Q cltq 9680   P.cnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803
This theorem is referenced by:  ltaddpr  9856  ltexprlem7  9864  prlem936  9869
  Copyright terms: Public domain W3C validator