MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcmpblnrlem Structured version   Visualization version   Unicode version

Theorem mulcmpblnrlem 9891
Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcmpblnrlem  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) ) )

Proof of Theorem mulcmpblnrlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . . . 9  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( ( A  +P.  D )  .P. 
F )  =  ( ( B  +P.  C
)  .P.  F )
)
2 distrpr 9850 . . . . . . . . . 10  |-  ( F  .P.  ( A  +P.  D ) )  =  ( ( F  .P.  A
)  +P.  ( F  .P.  D ) )
3 mulcompr 9845 . . . . . . . . . 10  |-  ( ( A  +P.  D )  .P.  F )  =  ( F  .P.  ( A  +P.  D ) )
4 mulcompr 9845 . . . . . . . . . . 11  |-  ( A  .P.  F )  =  ( F  .P.  A
)
5 mulcompr 9845 . . . . . . . . . . 11  |-  ( D  .P.  F )  =  ( F  .P.  D
)
64, 5oveq12i 6662 . . . . . . . . . 10  |-  ( ( A  .P.  F )  +P.  ( D  .P.  F ) )  =  ( ( F  .P.  A
)  +P.  ( F  .P.  D ) )
72, 3, 63eqtr4i 2654 . . . . . . . . 9  |-  ( ( A  +P.  D )  .P.  F )  =  ( ( A  .P.  F )  +P.  ( D  .P.  F ) )
8 distrpr 9850 . . . . . . . . . 10  |-  ( F  .P.  ( B  +P.  C ) )  =  ( ( F  .P.  B
)  +P.  ( F  .P.  C ) )
9 mulcompr 9845 . . . . . . . . . 10  |-  ( ( B  +P.  C )  .P.  F )  =  ( F  .P.  ( B  +P.  C ) )
10 mulcompr 9845 . . . . . . . . . . 11  |-  ( B  .P.  F )  =  ( F  .P.  B
)
11 mulcompr 9845 . . . . . . . . . . 11  |-  ( C  .P.  F )  =  ( F  .P.  C
)
1210, 11oveq12i 6662 . . . . . . . . . 10  |-  ( ( B  .P.  F )  +P.  ( C  .P.  F ) )  =  ( ( F  .P.  B
)  +P.  ( F  .P.  C ) )
138, 9, 123eqtr4i 2654 . . . . . . . . 9  |-  ( ( B  +P.  C )  .P.  F )  =  ( ( B  .P.  F )  +P.  ( C  .P.  F ) )
141, 7, 133eqtr3g 2679 . . . . . . . 8  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( ( A  .P.  F )  +P.  ( D  .P.  F
) )  =  ( ( B  .P.  F
)  +P.  ( C  .P.  F ) ) )
1514oveq1d 6665 . . . . . . 7  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( (
( A  .P.  F
)  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S
) )  =  ( ( ( B  .P.  F )  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S ) ) )
16 addasspr 9844 . . . . . . . 8  |-  ( ( ( B  .P.  F
)  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S
) )  =  ( ( B  .P.  F
)  +P.  ( ( C  .P.  F )  +P.  ( C  .P.  S
) ) )
17 oveq2 6658 . . . . . . . . . 10  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( C  .P.  ( F  +P.  S
) )  =  ( C  .P.  ( G  +P.  R ) ) )
18 distrpr 9850 . . . . . . . . . 10  |-  ( C  .P.  ( F  +P.  S ) )  =  ( ( C  .P.  F
)  +P.  ( C  .P.  S ) )
19 distrpr 9850 . . . . . . . . . 10  |-  ( C  .P.  ( G  +P.  R ) )  =  ( ( C  .P.  G
)  +P.  ( C  .P.  R ) )
2017, 18, 193eqtr3g 2679 . . . . . . . . 9  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( ( C  .P.  F )  +P.  ( C  .P.  S
) )  =  ( ( C  .P.  G
)  +P.  ( C  .P.  R ) ) )
2120oveq2d 6666 . . . . . . . 8  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( ( B  .P.  F )  +P.  ( ( C  .P.  F )  +P.  ( C  .P.  S ) ) )  =  ( ( B  .P.  F )  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) ) )
2216, 21syl5eq 2668 . . . . . . 7  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( (
( B  .P.  F
)  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S
) )  =  ( ( B  .P.  F
)  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) ) )
2315, 22sylan9eq 2676 . . . . . 6  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( A  .P.  F )  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( B  .P.  F
)  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) ) )
24 ovex 6678 . . . . . . 7  |-  ( A  .P.  F )  e. 
_V
25 ovex 6678 . . . . . . 7  |-  ( D  .P.  F )  e. 
_V
26 ovex 6678 . . . . . . 7  |-  ( C  .P.  S )  e. 
_V
27 addcompr 9843 . . . . . . 7  |-  ( x  +P.  y )  =  ( y  +P.  x
)
28 addasspr 9844 . . . . . . 7  |-  ( ( x  +P.  y )  +P.  z )  =  ( x  +P.  (
y  +P.  z )
)
2924, 25, 26, 27, 28caov32 6861 . . . . . 6  |-  ( ( ( A  .P.  F
)  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S
) )  =  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) )
30 ovex 6678 . . . . . . 7  |-  ( B  .P.  F )  e. 
_V
31 ovex 6678 . . . . . . 7  |-  ( C  .P.  G )  e. 
_V
32 ovex 6678 . . . . . . 7  |-  ( C  .P.  R )  e. 
_V
3330, 31, 32, 27, 28caov12 6862 . . . . . 6  |-  ( ( B  .P.  F )  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) )  =  ( ( C  .P.  G )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )
3423, 29, 333eqtr3g 2679 . . . . 5  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) )  =  ( ( C  .P.  G
)  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R
) ) ) )
3534oveq2d 6666 . . . 4  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) ) )  =  ( ( ( B  .P.  G
)  +P.  ( D  .P.  R ) )  +P.  ( ( C  .P.  G )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) ) )
36 oveq2 6658 . . . . . . . . . . 11  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( D  .P.  ( F  +P.  S
) )  =  ( D  .P.  ( G  +P.  R ) ) )
37 distrpr 9850 . . . . . . . . . . 11  |-  ( D  .P.  ( F  +P.  S ) )  =  ( ( D  .P.  F
)  +P.  ( D  .P.  S ) )
38 distrpr 9850 . . . . . . . . . . 11  |-  ( D  .P.  ( G  +P.  R ) )  =  ( ( D  .P.  G
)  +P.  ( D  .P.  R ) )
3936, 37, 383eqtr3g 2679 . . . . . . . . . 10  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( ( D  .P.  F )  +P.  ( D  .P.  S
) )  =  ( ( D  .P.  G
)  +P.  ( D  .P.  R ) ) )
4039oveq2d 6666 . . . . . . . . 9  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( ( A  .P.  G )  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S ) ) )  =  ( ( A  .P.  G )  +P.  ( ( D  .P.  G )  +P.  ( D  .P.  R
) ) ) )
41 addasspr 9844 . . . . . . . . 9  |-  ( ( ( A  .P.  G
)  +P.  ( D  .P.  G ) )  +P.  ( D  .P.  R
) )  =  ( ( A  .P.  G
)  +P.  ( ( D  .P.  G )  +P.  ( D  .P.  R
) ) )
4240, 41syl6eqr 2674 . . . . . . . 8  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( ( A  .P.  G )  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S ) ) )  =  ( ( ( A  .P.  G
)  +P.  ( D  .P.  G ) )  +P.  ( D  .P.  R
) ) )
43 oveq1 6657 . . . . . . . . . 10  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( ( A  +P.  D )  .P. 
G )  =  ( ( B  +P.  C
)  .P.  G )
)
44 distrpr 9850 . . . . . . . . . . 11  |-  ( G  .P.  ( A  +P.  D ) )  =  ( ( G  .P.  A
)  +P.  ( G  .P.  D ) )
45 mulcompr 9845 . . . . . . . . . . 11  |-  ( ( A  +P.  D )  .P.  G )  =  ( G  .P.  ( A  +P.  D ) )
46 mulcompr 9845 . . . . . . . . . . . 12  |-  ( A  .P.  G )  =  ( G  .P.  A
)
47 mulcompr 9845 . . . . . . . . . . . 12  |-  ( D  .P.  G )  =  ( G  .P.  D
)
4846, 47oveq12i 6662 . . . . . . . . . . 11  |-  ( ( A  .P.  G )  +P.  ( D  .P.  G ) )  =  ( ( G  .P.  A
)  +P.  ( G  .P.  D ) )
4944, 45, 483eqtr4i 2654 . . . . . . . . . 10  |-  ( ( A  +P.  D )  .P.  G )  =  ( ( A  .P.  G )  +P.  ( D  .P.  G ) )
50 distrpr 9850 . . . . . . . . . . 11  |-  ( G  .P.  ( B  +P.  C ) )  =  ( ( G  .P.  B
)  +P.  ( G  .P.  C ) )
51 mulcompr 9845 . . . . . . . . . . 11  |-  ( ( B  +P.  C )  .P.  G )  =  ( G  .P.  ( B  +P.  C ) )
52 mulcompr 9845 . . . . . . . . . . . 12  |-  ( B  .P.  G )  =  ( G  .P.  B
)
53 mulcompr 9845 . . . . . . . . . . . 12  |-  ( C  .P.  G )  =  ( G  .P.  C
)
5452, 53oveq12i 6662 . . . . . . . . . . 11  |-  ( ( B  .P.  G )  +P.  ( C  .P.  G ) )  =  ( ( G  .P.  B
)  +P.  ( G  .P.  C ) )
5550, 51, 543eqtr4i 2654 . . . . . . . . . 10  |-  ( ( B  +P.  C )  .P.  G )  =  ( ( B  .P.  G )  +P.  ( C  .P.  G ) )
5643, 49, 553eqtr3g 2679 . . . . . . . . 9  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( ( A  .P.  G )  +P.  ( D  .P.  G
) )  =  ( ( B  .P.  G
)  +P.  ( C  .P.  G ) ) )
5756oveq1d 6665 . . . . . . . 8  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( (
( A  .P.  G
)  +P.  ( D  .P.  G ) )  +P.  ( D  .P.  R
) )  =  ( ( ( B  .P.  G )  +P.  ( C  .P.  G ) )  +P.  ( D  .P.  R ) ) )
5842, 57sylan9eqr 2678 . . . . . . 7  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( A  .P.  G
)  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S
) ) )  =  ( ( ( B  .P.  G )  +P.  ( C  .P.  G
) )  +P.  ( D  .P.  R ) ) )
59 ovex 6678 . . . . . . . 8  |-  ( A  .P.  G )  e. 
_V
60 ovex 6678 . . . . . . . 8  |-  ( D  .P.  S )  e. 
_V
6159, 25, 60, 27, 28caov12 6862 . . . . . . 7  |-  ( ( A  .P.  G )  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S
) ) )  =  ( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S ) ) )
62 ovex 6678 . . . . . . . 8  |-  ( B  .P.  G )  e. 
_V
63 ovex 6678 . . . . . . . 8  |-  ( D  .P.  R )  e. 
_V
6462, 31, 63, 27, 28caov32 6861 . . . . . . 7  |-  ( ( ( B  .P.  G
)  +P.  ( C  .P.  G ) )  +P.  ( D  .P.  R
) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G ) )
6558, 61, 643eqtr3g 2679 . . . . . 6  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( D  .P.  F
)  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S
) ) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R
) )  +P.  ( C  .P.  G ) ) )
6665oveq1d 6665 . . . . 5  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S ) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) )
67 addasspr 9844 . . . . 5  |-  ( ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  (
( C  .P.  G
)  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R
) ) ) )
6866, 67syl6eq 2672 . . . 4  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S ) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( ( B  .P.  G
)  +P.  ( D  .P.  R ) )  +P.  ( ( C  .P.  G )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) ) )
6935, 68eqtr4d 2659 . . 3  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) ) )  =  ( ( ( D  .P.  F
)  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S
) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) )
70 ovex 6678 . . . 4  |-  ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  e.  _V
71 ovex 6678 . . . 4  |-  ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  e.  _V
7270, 71, 25, 27, 28caov13 6864 . . 3  |-  ( ( ( B  .P.  G
)  +P.  ( D  .P.  R ) )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S
) )  +P.  ( D  .P.  F ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  (
( B  .P.  G
)  +P.  ( D  .P.  R ) ) ) )
73 addasspr 9844 . . 3  |-  ( ( ( D  .P.  F
)  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S
) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( D  .P.  S ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) )
7469, 72, 733eqtr3g 2679 . 2  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( C  .P.  S ) )  +P.  ( ( B  .P.  G )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( D  .P.  S ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) ) )
7524, 26, 62, 27, 28, 63caov4 6865 . . 3  |-  ( ( ( A  .P.  F
)  +P.  ( C  .P.  S ) )  +P.  ( ( B  .P.  G )  +P.  ( D  .P.  R ) ) )  =  ( ( ( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) )
7675oveq2i 6661 . 2  |-  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  (
( B  .P.  G
)  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
( C  .P.  S
)  +P.  ( D  .P.  R ) ) ) )
7759, 60, 30, 27, 28, 32caov42 6867 . . 3  |-  ( ( ( A  .P.  G
)  +P.  ( D  .P.  S ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( ( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) )
7877oveq2i 6661 . 2  |-  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( D  .P.  S ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( B  .P.  F ) )  +P.  (
( C  .P.  R
)  +P.  ( D  .P.  S ) ) ) )
7974, 76, 783eqtr3g 2679 1  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483  (class class class)co 6650    +P. cpp 9683    .P. cmp 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-mp 9806
This theorem is referenced by:  mulcmpblnr  9892
  Copyright terms: Public domain W3C validator