Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omessre Structured version   Visualization version   Unicode version

Theorem omessre 40724
Description: If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omessre.o  |-  ( ph  ->  O  e. OutMeas )
omessre.x  |-  X  = 
U. dom  O
omessre.a  |-  ( ph  ->  A  C_  X )
omessre.re  |-  ( ph  ->  ( O `  A
)  e.  RR )
omessre.b  |-  ( ph  ->  B  C_  A )
Assertion
Ref Expression
omessre  |-  ( ph  ->  ( O `  B
)  e.  RR )

Proof of Theorem omessre
StepHypRef Expression
1 rge0ssre 12280 . 2  |-  ( 0 [,) +oo )  C_  RR
2 0xr 10086 . . . 4  |-  0  e.  RR*
32a1i 11 . . 3  |-  ( ph  ->  0  e.  RR* )
4 pnfxr 10092 . . . 4  |- +oo  e.  RR*
54a1i 11 . . 3  |-  ( ph  -> +oo  e.  RR* )
6 omessre.o . . . 4  |-  ( ph  ->  O  e. OutMeas )
7 omessre.x . . . 4  |-  X  = 
U. dom  O
8 omessre.b . . . . 5  |-  ( ph  ->  B  C_  A )
9 omessre.a . . . . 5  |-  ( ph  ->  A  C_  X )
108, 9sstrd 3613 . . . 4  |-  ( ph  ->  B  C_  X )
116, 7, 10omexrcl 40721 . . 3  |-  ( ph  ->  ( O `  B
)  e.  RR* )
126, 7, 10omecl 40717 . . . 4  |-  ( ph  ->  ( O `  B
)  e.  ( 0 [,] +oo ) )
13 iccgelb 12230 . . . 4  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  ( O `
 B )  e.  ( 0 [,] +oo ) )  ->  0  <_  ( O `  B
) )
143, 5, 12, 13syl3anc 1326 . . 3  |-  ( ph  ->  0  <_  ( O `  B ) )
15 omessre.re . . . . 5  |-  ( ph  ->  ( O `  A
)  e.  RR )
1615rexrd 10089 . . . 4  |-  ( ph  ->  ( O `  A
)  e.  RR* )
176, 7, 9, 8omessle 40712 . . . 4  |-  ( ph  ->  ( O `  B
)  <_  ( O `  A ) )
1815ltpnfd 11955 . . . 4  |-  ( ph  ->  ( O `  A
)  < +oo )
1911, 16, 5, 17, 18xrlelttrd 11991 . . 3  |-  ( ph  ->  ( O `  B
)  < +oo )
203, 5, 11, 14, 19elicod 12224 . 2  |-  ( ph  ->  ( O `  B
)  e.  ( 0 [,) +oo ) )
211, 20sseldi 3601 1  |-  ( ph  ->  ( O `  B
)  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    C_ wss 3574   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    <_ cle 10075   [,)cico 12177   [,]cicc 12178  OutMeascome 40703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181  df-icc 12182  df-ome 40704
This theorem is referenced by:  carageniuncllem1  40735  carageniuncllem2  40736
  Copyright terms: Public domain W3C validator