MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatvalfn Structured version   Visualization version   Unicode version

Theorem ccatvalfn 13365
Description: The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
ccatvalfn  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  Fn  ( 0..^ ( ( # `  A
)  +  ( # `  B ) ) ) )

Proof of Theorem ccatvalfn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ccatfval 13358 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  =  ( x  e.  ( 0..^ ( (
# `  A )  +  ( # `  B
) ) )  |->  if ( x  e.  ( 0..^ ( # `  A
) ) ,  ( A `  x ) ,  ( B `  ( x  -  ( # `
 A ) ) ) ) ) )
2 fvex 6201 . . . . 5  |-  ( A `
 x )  e. 
_V
3 fvex 6201 . . . . 5  |-  ( B `
 ( x  -  ( # `  A ) ) )  e.  _V
42, 3ifex 4156 . . . 4  |-  if ( x  e.  ( 0..^ ( # `  A
) ) ,  ( A `  x ) ,  ( B `  ( x  -  ( # `
 A ) ) ) )  e.  _V
5 eqid 2622 . . . 4  |-  ( x  e.  ( 0..^ ( ( # `  A
)  +  ( # `  B ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  A ) ) ,  ( A `  x
) ,  ( B `
 ( x  -  ( # `  A ) ) ) ) )  =  ( x  e.  ( 0..^ ( (
# `  A )  +  ( # `  B
) ) )  |->  if ( x  e.  ( 0..^ ( # `  A
) ) ,  ( A `  x ) ,  ( B `  ( x  -  ( # `
 A ) ) ) ) )
64, 5fnmpti 6022 . . 3  |-  ( x  e.  ( 0..^ ( ( # `  A
)  +  ( # `  B ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  A ) ) ,  ( A `  x
) ,  ( B `
 ( x  -  ( # `  A ) ) ) ) )  Fn  ( 0..^ ( ( # `  A
)  +  ( # `  B ) ) )
7 fneq1 5979 . . 3  |-  ( ( A ++  B )  =  ( x  e.  ( 0..^ ( ( # `  A )  +  (
# `  B )
) )  |->  if ( x  e.  ( 0..^ ( # `  A
) ) ,  ( A `  x ) ,  ( B `  ( x  -  ( # `
 A ) ) ) ) )  -> 
( ( A ++  B
)  Fn  ( 0..^ ( ( # `  A
)  +  ( # `  B ) ) )  <-> 
( x  e.  ( 0..^ ( ( # `  A )  +  (
# `  B )
) )  |->  if ( x  e.  ( 0..^ ( # `  A
) ) ,  ( A `  x ) ,  ( B `  ( x  -  ( # `
 A ) ) ) ) )  Fn  ( 0..^ ( (
# `  A )  +  ( # `  B
) ) ) ) )
86, 7mpbiri 248 . 2  |-  ( ( A ++  B )  =  ( x  e.  ( 0..^ ( ( # `  A )  +  (
# `  B )
) )  |->  if ( x  e.  ( 0..^ ( # `  A
) ) ,  ( A `  x ) ,  ( B `  ( x  -  ( # `
 A ) ) ) ) )  -> 
( A ++  B )  Fn  ( 0..^ ( ( # `  A
)  +  ( # `  B ) ) ) )
91, 8syl 17 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  Fn  ( 0..^ ( ( # `  A
)  +  ( # `  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939    - cmin 10266  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-concat 13301
This theorem is referenced by:  ccatlid  13369  ccatrid  13370  ccatrn  13372  swrdccatin12  13491  pfxccat1  41410  pfxccatin12  41425
  Copyright terms: Public domain W3C validator