MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin12 Structured version   Visualization version   Unicode version

Theorem swrdccatin12 13491
Description: The subword of a concatenation of two words within both of the concatenated words. (Contributed by Alexander van der Vekens, 5-Apr-2018.) (Revised by Alexander van der Vekens, 27-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l  |-  L  =  ( # `  A
)
Assertion
Ref Expression
swrdccatin12  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) )

Proof of Theorem swrdccatin12
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 ccatcl 13359 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
21adantr 481 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( A ++  B )  e. Word  V
)
3 elfz0fzfz0 12444 . . . . 5  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) )  ->  M  e.  ( 0 ... N ) )
43adantl 482 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  M  e.  ( 0 ... N
) )
5 elfzuz2 12346 . . . . . . . . 9  |-  ( M  e.  ( 0 ... L )  ->  L  e.  ( ZZ>= `  0 )
)
65adantl 482 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  e.  ( 0 ... L ) )  ->  L  e.  ( ZZ>= `  0 )
)
7 fzss1 12380 . . . . . . . 8  |-  ( L  e.  ( ZZ>= `  0
)  ->  ( L ... ( L  +  (
# `  B )
) )  C_  (
0 ... ( L  +  ( # `  B ) ) ) )
86, 7syl 17 . . . . . . 7  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  e.  ( 0 ... L ) )  ->  ( L ... ( L  +  (
# `  B )
) )  C_  (
0 ... ( L  +  ( # `  B ) ) ) )
9 ccatlen 13360 . . . . . . . . . 10  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( # `  ( A ++  B ) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
10 swrdccatin12.l . . . . . . . . . . . 12  |-  L  =  ( # `  A
)
1110eqcomi 2631 . . . . . . . . . . 11  |-  ( # `  A )  =  L
1211oveq1i 6660 . . . . . . . . . 10  |-  ( (
# `  A )  +  ( # `  B
) )  =  ( L  +  ( # `  B ) )
139, 12syl6eq 2672 . . . . . . . . 9  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( # `  ( A ++  B ) )  =  ( L  +  (
# `  B )
) )
1413adantr 481 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  e.  ( 0 ... L ) )  ->  ( # `  ( A ++  B ) )  =  ( L  +  (
# `  B )
) )
1514oveq2d 6666 . . . . . . 7  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  e.  ( 0 ... L ) )  ->  ( 0 ... ( # `  ( A ++  B ) ) )  =  ( 0 ... ( L  +  (
# `  B )
) ) )
168, 15sseqtr4d 3642 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  e.  ( 0 ... L ) )  ->  ( L ... ( L  +  (
# `  B )
) )  C_  (
0 ... ( # `  ( A ++  B ) ) ) )
1716sseld 3602 . . . . 5  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  e.  ( 0 ... L ) )  ->  ( N  e.  ( L ... ( L  +  ( # `  B
) ) )  ->  N  e.  ( 0 ... ( # `  ( A ++  B ) ) ) ) )
1817impr 649 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  N  e.  ( 0 ... ( # `
 ( A ++  B
) ) ) )
19 swrdvalfn 13426 . . . 4  |-  ( ( ( A ++  B )  e. Word  V  /\  M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( # `
 ( A ++  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  Fn  (
0..^ ( N  -  M ) ) )
202, 4, 18, 19syl3anc 1326 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  Fn  (
0..^ ( N  -  M ) ) )
21 swrdcl 13419 . . . . . . 7  |-  ( A  e. Word  V  ->  ( A substr  <. M ,  L >. )  e. Word  V )
22 swrdcl 13419 . . . . . . 7  |-  ( B  e. Word  V  ->  ( B substr  <. 0 ,  ( N  -  L )
>. )  e. Word  V )
2321, 22anim12i 590 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L ) >. )  e. Word  V ) )
2423adantr 481 . . . . 5  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L
) >. )  e. Word  V
) )
25 ccatvalfn 13365 . . . . 5  |-  ( ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L ) >. )  e. Word  V )  ->  (
( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) )  Fn  (
0..^ ( ( # `  ( A substr  <. M ,  L >. ) )  +  ( # `  ( B substr  <. 0 ,  ( N  -  L )
>. ) ) ) ) )
2624, 25syl 17 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
)  Fn  ( 0..^ ( ( # `  ( A substr  <. M ,  L >. ) )  +  (
# `  ( B substr  <.
0 ,  ( N  -  L ) >.
) ) ) ) )
27 simpll 790 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  A  e. Word  V )
28 simprl 794 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  M  e.  ( 0 ... L
) )
29 lencl 13324 . . . . . . . . . . . 12  |-  ( A  e. Word  V  ->  ( # `
 A )  e. 
NN0 )
30 elnn0uz 11725 . . . . . . . . . . . . . 14  |-  ( (
# `  A )  e.  NN0  <->  ( # `  A
)  e.  ( ZZ>= ` 
0 ) )
31 eluzfz2 12349 . . . . . . . . . . . . . 14  |-  ( (
# `  A )  e.  ( ZZ>= `  0 )  ->  ( # `  A
)  e.  ( 0 ... ( # `  A
) ) )
3230, 31sylbi 207 . . . . . . . . . . . . 13  |-  ( (
# `  A )  e.  NN0  ->  ( # `  A
)  e.  ( 0 ... ( # `  A
) ) )
3310, 32syl5eqel 2705 . . . . . . . . . . . 12  |-  ( (
# `  A )  e.  NN0  ->  L  e.  ( 0 ... ( # `
 A ) ) )
3429, 33syl 17 . . . . . . . . . . 11  |-  ( A  e. Word  V  ->  L  e.  ( 0 ... ( # `
 A ) ) )
3534adantr 481 . . . . . . . . . 10  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  L  e.  ( 0 ... ( # `  A
) ) )
3635adantr 481 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  L  e.  ( 0 ... ( # `
 A ) ) )
37 swrdlen 13423 . . . . . . . . 9  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... L )  /\  L  e.  ( 0 ... ( # `  A
) ) )  -> 
( # `  ( A substr  <. M ,  L >. ) )  =  ( L  -  M ) )
3827, 28, 36, 37syl3anc 1326 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( # `  ( A substr  <. M ,  L >. ) )  =  ( L  -  M ) )
39 simpr 477 . . . . . . . . . 10  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  B  e. Word  V )
4039adantr 481 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  B  e. Word  V )
41 lencl 13324 . . . . . . . . . . . . 13  |-  ( B  e. Word  V  ->  ( # `
 B )  e. 
NN0 )
4241nn0zd 11480 . . . . . . . . . . . 12  |-  ( B  e. Word  V  ->  ( # `
 B )  e.  ZZ )
4342adantl 482 . . . . . . . . . . 11  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( # `  B
)  e.  ZZ )
44 simpr 477 . . . . . . . . . . 11  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) )  ->  N  e.  ( L ... ( L  +  (
# `  B )
) ) )
4543, 44anim12i 590 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( # `
 B )  e.  ZZ  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )
46 elfzmlbp 12450 . . . . . . . . . 10  |-  ( ( ( # `  B
)  e.  ZZ  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) )  -> 
( N  -  L
)  e.  ( 0 ... ( # `  B
) ) )
4745, 46syl 17 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( N  -  L )  e.  ( 0 ... ( # `  B ) ) )
48 swrd0len 13422 . . . . . . . . 9  |-  ( ( B  e. Word  V  /\  ( N  -  L
)  e.  ( 0 ... ( # `  B
) ) )  -> 
( # `  ( B substr  <. 0 ,  ( N  -  L ) >.
) )  =  ( N  -  L ) )
4940, 47, 48syl2anc 693 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( # `  ( B substr  <. 0 ,  ( N  -  L )
>. ) )  =  ( N  -  L ) )
5038, 49oveq12d 6668 . . . . . . 7  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( # `
 ( A substr  <. M ,  L >. ) )  +  ( # `  ( B substr  <. 0 ,  ( N  -  L )
>. ) ) )  =  ( ( L  -  M )  +  ( N  -  L ) ) )
51 elfz2nn0 12431 . . . . . . . . . . 11  |-  ( M  e.  ( 0 ... L )  <->  ( M  e.  NN0  /\  L  e. 
NN0  /\  M  <_  L ) )
52 nn0cn 11302 . . . . . . . . . . . . . . . . 17  |-  ( L  e.  NN0  ->  L  e.  CC )
5352adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  ->  L  e.  CC )
5453adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  ( M  e.  NN0  /\  L  e.  NN0 )
)  ->  L  e.  CC )
55 nn0cn 11302 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  M  e.  CC )
5655ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  ( M  e.  NN0  /\  L  e.  NN0 )
)  ->  M  e.  CC )
57 zcn 11382 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  N  e.  CC )
5857adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  ( M  e.  NN0  /\  L  e.  NN0 )
)  ->  N  e.  CC )
5954, 56, 583jca 1242 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  ( M  e.  NN0  /\  L  e.  NN0 )
)  ->  ( L  e.  CC  /\  M  e.  CC  /\  N  e.  CC ) )
6059ex 450 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  (
( M  e.  NN0  /\  L  e.  NN0 )  ->  ( L  e.  CC  /\  M  e.  CC  /\  N  e.  CC )
) )
61 elfzelz 12342 . . . . . . . . . . . . 13  |-  ( N  e.  ( L ... ( L  +  ( # `
 B ) ) )  ->  N  e.  ZZ )
6260, 61syl11 33 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( N  e.  ( L ... ( L  +  ( # `  B
) ) )  -> 
( L  e.  CC  /\  M  e.  CC  /\  N  e.  CC )
) )
63623adant3 1081 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  ( N  e.  ( L ... ( L  +  (
# `  B )
) )  ->  ( L  e.  CC  /\  M  e.  CC  /\  N  e.  CC ) ) )
6451, 63sylbi 207 . . . . . . . . . 10  |-  ( M  e.  ( 0 ... L )  ->  ( N  e.  ( L ... ( L  +  (
# `  B )
) )  ->  ( L  e.  CC  /\  M  e.  CC  /\  N  e.  CC ) ) )
6564imp 445 . . . . . . . . 9  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) )  -> 
( L  e.  CC  /\  M  e.  CC  /\  N  e.  CC )
)
6665adantl 482 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( L  e.  CC  /\  M  e.  CC  /\  N  e.  CC ) )
67 npncan3 10319 . . . . . . . 8  |-  ( ( L  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  (
( L  -  M
)  +  ( N  -  L ) )  =  ( N  -  M ) )
6866, 67syl 17 . . . . . . 7  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( L  -  M )  +  ( N  -  L ) )  =  ( N  -  M
) )
6950, 68eqtr2d 2657 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( N  -  M )  =  ( ( # `  ( A substr  <. M ,  L >. ) )  +  (
# `  ( B substr  <.
0 ,  ( N  -  L ) >.
) ) ) )
7069oveq2d 6666 . . . . 5  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( 0..^ ( N  -  M
) )  =  ( 0..^ ( ( # `  ( A substr  <. M ,  L >. ) )  +  ( # `  ( B substr  <. 0 ,  ( N  -  L )
>. ) ) ) ) )
7170fneq2d 5982 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( (
( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) )  Fn  (
0..^ ( N  -  M ) )  <->  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
)  Fn  ( 0..^ ( ( # `  ( A substr  <. M ,  L >. ) )  +  (
# `  ( B substr  <.
0 ,  ( N  -  L ) >.
) ) ) ) ) )
7226, 71mpbird 247 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
)  Fn  ( 0..^ ( N  -  M
) ) )
73 simprl 794 . . . . . 6  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  (
( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) ) )
74 simpr 477 . . . . . . . 8  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  k  e.  ( 0..^ ( N  -  M ) ) )
7574anim2i 593 . . . . . . 7  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  (
k  e.  ( 0..^ ( L  -  M
) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )
7675ancomd 467 . . . . . 6  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  (
k  e.  ( 0..^ ( N  -  M
) )  /\  k  e.  ( 0..^ ( L  -  M ) ) ) )
7710swrdccatin12lem3 13490 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( (
k  e.  ( 0..^ ( N  -  M
) )  /\  k  e.  ( 0..^ ( L  -  M ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( A substr  <. M ,  L >. ) `  k
) ) )
7873, 76, 77sylc 65 . . . . 5  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  (
( ( A ++  B
) substr  <. M ,  N >. ) `  k )  =  ( ( A substr  <. M ,  L >. ) `
 k ) )
7924ad2antrl 764 . . . . . . 7  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  (
( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L ) >. )  e. Word  V ) )
80 simpl 473 . . . . . . . 8  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  k  e.  ( 0..^ ( L  -  M ) ) )
81 nn0fz0 12437 . . . . . . . . . . . . . . . 16  |-  ( (
# `  A )  e.  NN0  <->  ( # `  A
)  e.  ( 0 ... ( # `  A
) ) )
8229, 81sylib 208 . . . . . . . . . . . . . . 15  |-  ( A  e. Word  V  ->  ( # `
 A )  e.  ( 0 ... ( # `
 A ) ) )
8310, 82syl5eqel 2705 . . . . . . . . . . . . . 14  |-  ( A  e. Word  V  ->  L  e.  ( 0 ... ( # `
 A ) ) )
8483adantr 481 . . . . . . . . . . . . 13  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  L  e.  ( 0 ... ( # `  A
) ) )
8584adantr 481 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  L  e.  ( 0 ... ( # `
 A ) ) )
8627, 28, 853jca 1242 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( A  e. Word  V  /\  M  e.  ( 0 ... L
)  /\  L  e.  ( 0 ... ( # `
 A ) ) ) )
8786ad2antrl 764 . . . . . . . . . 10  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( A  e. Word  V  /\  M  e.  ( 0 ... L
)  /\  L  e.  ( 0 ... ( # `
 A ) ) ) )
8887, 37syl 17 . . . . . . . . 9  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( # `
 ( A substr  <. M ,  L >. ) )  =  ( L  -  M
) )
8988oveq2d 6666 . . . . . . . 8  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  (
0..^ ( # `  ( A substr  <. M ,  L >. ) ) )  =  ( 0..^ ( L  -  M ) ) )
9080, 89eleqtrrd 2704 . . . . . . 7  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  k  e.  ( 0..^ ( # `  ( A substr  <. M ,  L >. ) ) ) )
91 df-3an 1039 . . . . . . 7  |-  ( ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L ) >. )  e. Word  V  /\  k  e.  ( 0..^ ( # `  ( A substr  <. M ,  L >. ) ) ) )  <->  ( ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L
) >. )  e. Word  V
)  /\  k  e.  ( 0..^ ( # `  ( A substr  <. M ,  L >. ) ) ) ) )
9279, 90, 91sylanbrc 698 . . . . . 6  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  (
( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L ) >. )  e. Word  V  /\  k  e.  ( 0..^ ( # `  ( A substr  <. M ,  L >. ) ) ) ) )
93 ccatval1 13361 . . . . . 6  |-  ( ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L ) >. )  e. Word  V  /\  k  e.  ( 0..^ ( # `  ( A substr  <. M ,  L >. ) ) ) )  ->  ( (
( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) `  k
)  =  ( ( A substr  <. M ,  L >. ) `  k ) )
9492, 93syl 17 . . . . 5  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  (
( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) `  k
)  =  ( ( A substr  <. M ,  L >. ) `  k ) )
9578, 94eqtr4d 2659 . . . 4  |-  ( ( k  e.  ( 0..^ ( L  -  M
) )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  (
( ( A ++  B
) substr  <. M ,  N >. ) `  k )  =  ( ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) `  k )
)
96 simprl 794 . . . . . 6  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) ) )
9774anim2i 593 . . . . . . 7  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( -.  k  e.  ( 0..^ ( L  -  M
) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )
9897ancomd 467 . . . . . 6  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( k  e.  ( 0..^ ( N  -  M ) )  /\  -.  k  e.  ( 0..^ ( L  -  M ) ) ) )
9910swrdccatin12lem2 13489 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( (
k  e.  ( 0..^ ( N  -  M
) )  /\  -.  k  e.  ( 0..^ ( L  -  M
) ) )  -> 
( ( ( A ++  B ) substr  <. M ,  N >. ) `  k
)  =  ( ( B substr  <. 0 ,  ( N  -  L )
>. ) `  ( k  -  ( # `  ( A substr  <. M ,  L >. ) ) ) ) ) )
10096, 98, 99sylc 65 . . . . 5  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( B substr  <. 0 ,  ( N  -  L ) >. ) `  ( k  -  ( # `
 ( A substr  <. M ,  L >. ) ) ) ) )
10124ad2antrl 764 . . . . . . 7  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L
) >. )  e. Word  V
) )
102 elfzuz 12338 . . . . . . . . . . . . 13  |-  ( N  e.  ( L ... ( L  +  ( # `
 B ) ) )  ->  N  e.  ( ZZ>= `  L )
)
103 eluzelz 11697 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  L
)  ->  N  e.  ZZ )
104 simpll 790 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( L  e.  NN0  /\  M  e.  NN0 )  /\  N  e.  ZZ )  ->  L  e.  NN0 )
105 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( L  e.  NN0  /\  M  e.  NN0 )  ->  M  e.  NN0 )
106105adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( L  e.  NN0  /\  M  e.  NN0 )  /\  N  e.  ZZ )  ->  M  e.  NN0 )
107 simpr 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( L  e.  NN0  /\  M  e.  NN0 )  /\  N  e.  ZZ )  ->  N  e.  ZZ )
108104, 106, 1073jca 1242 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( L  e.  NN0  /\  M  e.  NN0 )  /\  N  e.  ZZ )  ->  ( L  e. 
NN0  /\  M  e.  NN0 
/\  N  e.  ZZ ) )
109108ex 450 . . . . . . . . . . . . . . . . 17  |-  ( ( L  e.  NN0  /\  M  e.  NN0 )  -> 
( N  e.  ZZ  ->  ( L  e.  NN0  /\  M  e.  NN0  /\  N  e.  ZZ )
) )
110109ancoms 469 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( N  e.  ZZ  ->  ( L  e.  NN0  /\  M  e.  NN0  /\  N  e.  ZZ )
) )
1111103adant3 1081 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  ( N  e.  ZZ  ->  ( L  e.  NN0  /\  M  e.  NN0  /\  N  e.  ZZ ) ) )
11251, 111sylbi 207 . . . . . . . . . . . . . 14  |-  ( M  e.  ( 0 ... L )  ->  ( N  e.  ZZ  ->  ( L  e.  NN0  /\  M  e.  NN0  /\  N  e.  ZZ ) ) )
113103, 112syl5com 31 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  L
)  ->  ( M  e.  ( 0 ... L
)  ->  ( L  e.  NN0  /\  M  e. 
NN0  /\  N  e.  ZZ ) ) )
114102, 113syl 17 . . . . . . . . . . . 12  |-  ( N  e.  ( L ... ( L  +  ( # `
 B ) ) )  ->  ( M  e.  ( 0 ... L
)  ->  ( L  e.  NN0  /\  M  e. 
NN0  /\  N  e.  ZZ ) ) )
115114impcom 446 . . . . . . . . . . 11  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) )  -> 
( L  e.  NN0  /\  M  e.  NN0  /\  N  e.  ZZ )
)
116115adantl 482 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( L  e.  NN0  /\  M  e. 
NN0  /\  N  e.  ZZ ) )
117116ad2antrl 764 . . . . . . . . 9  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( L  e.  NN0  /\  M  e. 
NN0  /\  N  e.  ZZ ) )
118 swrdccatin12lem1 13484 . . . . . . . . 9  |-  ( ( L  e.  NN0  /\  M  e.  NN0  /\  N  e.  ZZ )  ->  (
( k  e.  ( 0..^ ( N  -  M ) )  /\  -.  k  e.  (
0..^ ( L  -  M ) ) )  ->  k  e.  ( ( L  -  M
)..^ ( ( L  -  M )  +  ( N  -  L
) ) ) ) )
119117, 98, 118sylc 65 . . . . . . . 8  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  k  e.  ( ( L  -  M )..^ ( ( L  -  M )  +  ( N  -  L
) ) ) )
12027, 28, 85, 37syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( # `  ( A substr  <. M ,  L >. ) )  =  ( L  -  M ) )
12139adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( L ... ( L  +  ( # `  B ) ) )  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  B  e. Word  V )
12243adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( L ... ( L  +  ( # `  B ) ) )  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  -> 
( # `  B )  e.  ZZ )
123 simpl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( L ... ( L  +  ( # `  B ) ) )  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  ->  N  e.  ( L ... ( L  +  (
# `  B )
) ) )
124122, 123, 46syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( L ... ( L  +  ( # `  B ) ) )  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  -> 
( N  -  L
)  e.  ( 0 ... ( # `  B
) ) )
125121, 124jca 554 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( L ... ( L  +  ( # `  B ) ) )  /\  ( A  e. Word  V  /\  B  e. Word  V ) )  -> 
( B  e. Word  V  /\  ( N  -  L
)  e.  ( 0 ... ( # `  B
) ) ) )
126125ex 450 . . . . . . . . . . . . . 14  |-  ( N  e.  ( L ... ( L  +  ( # `
 B ) ) )  ->  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( B  e. Word  V  /\  ( N  -  L )  e.  ( 0 ... ( # `
 B ) ) ) ) )
127126adantl 482 . . . . . . . . . . . . 13  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) )  -> 
( ( A  e. Word  V  /\  B  e. Word  V
)  ->  ( B  e. Word  V  /\  ( N  -  L )  e.  ( 0 ... ( # `
 B ) ) ) ) )
128127impcom 446 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( B  e. Word  V  /\  ( N  -  L )  e.  ( 0 ... ( # `
 B ) ) ) )
129128, 48syl 17 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( # `  ( B substr  <. 0 ,  ( N  -  L )
>. ) )  =  ( N  -  L ) )
130120, 129oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( # `
 ( A substr  <. M ,  L >. ) )  +  ( # `  ( B substr  <. 0 ,  ( N  -  L )
>. ) ) )  =  ( ( L  -  M )  +  ( N  -  L ) ) )
131120, 130oveq12d 6668 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( # `
 ( A substr  <. M ,  L >. ) )..^ ( ( # `  ( A substr  <. M ,  L >. ) )  +  (
# `  ( B substr  <.
0 ,  ( N  -  L ) >.
) ) ) )  =  ( ( L  -  M )..^ ( ( L  -  M
)  +  ( N  -  L ) ) ) )
132131ad2antrl 764 . . . . . . . 8  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( ( # `
 ( A substr  <. M ,  L >. ) )..^ ( ( # `  ( A substr  <. M ,  L >. ) )  +  (
# `  ( B substr  <.
0 ,  ( N  -  L ) >.
) ) ) )  =  ( ( L  -  M )..^ ( ( L  -  M
)  +  ( N  -  L ) ) ) )
133119, 132eleqtrrd 2704 . . . . . . 7  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  k  e.  ( ( # `  ( A substr  <. M ,  L >. ) )..^ ( (
# `  ( A substr  <. M ,  L >. ) )  +  ( # `  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) )
134 df-3an 1039 . . . . . . 7  |-  ( ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L ) >. )  e. Word  V  /\  k  e.  ( ( # `  ( A substr  <. M ,  L >. ) )..^ ( (
# `  ( A substr  <. M ,  L >. ) )  +  ( # `  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) )  <-> 
( ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L )
>. )  e. Word  V )  /\  k  e.  ( ( # `  ( A substr  <. M ,  L >. ) )..^ ( (
# `  ( A substr  <. M ,  L >. ) )  +  ( # `  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) )
135101, 133, 134sylanbrc 698 . . . . . 6  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L
) >. )  e. Word  V  /\  k  e.  (
( # `  ( A substr  <. M ,  L >. ) )..^ ( ( # `  ( A substr  <. M ,  L >. ) )  +  ( # `  ( B substr  <. 0 ,  ( N  -  L )
>. ) ) ) ) ) )
136 ccatval2 13362 . . . . . 6  |-  ( ( ( A substr  <. M ,  L >. )  e. Word  V  /\  ( B substr  <. 0 ,  ( N  -  L ) >. )  e. Word  V  /\  k  e.  ( ( # `  ( A substr  <. M ,  L >. ) )..^ ( (
# `  ( A substr  <. M ,  L >. ) )  +  ( # `  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) )  ->  ( ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) `  k )  =  ( ( B substr  <. 0 ,  ( N  -  L ) >.
) `  ( k  -  ( # `  ( A substr  <. M ,  L >. ) ) ) ) )
137135, 136syl 17 . . . . 5  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( (
( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) `  k
)  =  ( ( B substr  <. 0 ,  ( N  -  L )
>. ) `  ( k  -  ( # `  ( A substr  <. M ,  L >. ) ) ) ) )
138100, 137eqtr4d 2659 . . . 4  |-  ( ( -.  k  e.  ( 0..^ ( L  -  M ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) `  k )
)
13995, 138pm2.61ian 831 . . 3  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) `  k )
)
14020, 72, 139eqfnfvd 6314 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) )
141140ex 450 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   <.cop 4183   class class class wbr 4653    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    + caddc 9939    <_ cle 10075    - cmin 10266   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by:  swrdccat3  13492  swrdccatin12d  13501
  Copyright terms: Public domain W3C validator