MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilss Structured version   Visualization version   Unicode version

Theorem cfilss 23068
Description: A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfilss  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D ) )  /\  ( G  e.  ( Fil `  X
)  /\  F  C_  G
) )  ->  G  e.  (CauFil `  D )
)

Proof of Theorem cfilss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 794 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D ) )  /\  ( G  e.  ( Fil `  X
)  /\  F  C_  G
) )  ->  G  e.  ( Fil `  X
) )
2 simprr 796 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D ) )  /\  ( G  e.  ( Fil `  X
)  /\  F  C_  G
) )  ->  F  C_  G )
3 iscfil 23063 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
43simplbda 654 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D ) )  ->  A. x  e.  RR+  E. y  e.  F  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) )
54adantr 481 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D ) )  /\  ( G  e.  ( Fil `  X
)  /\  F  C_  G
) )  ->  A. x  e.  RR+  E. y  e.  F  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) )
6 ssrexv 3667 . . . 4  |-  ( F 
C_  G  ->  ( E. y  e.  F  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )  ->  E. y  e.  G  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
76ralimdv 2963 . . 3  |-  ( F 
C_  G  ->  ( A. x  e.  RR+  E. y  e.  F  ( D " ( y  X.  y
) )  C_  (
0 [,) x )  ->  A. x  e.  RR+  E. y  e.  G  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) ) )
82, 5, 7sylc 65 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D ) )  /\  ( G  e.  ( Fil `  X
)  /\  F  C_  G
) )  ->  A. x  e.  RR+  E. y  e.  G  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) )
9 iscfil 23063 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( G  e.  (CauFil `  D
)  <->  ( G  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  G  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
109ad2antrr 762 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D ) )  /\  ( G  e.  ( Fil `  X
)  /\  F  C_  G
) )  ->  ( G  e.  (CauFil `  D
)  <->  ( G  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  G  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
111, 8, 10mpbir2and 957 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D ) )  /\  ( G  e.  ( Fil `  X
)  /\  F  C_  G
) )  ->  G  e.  (CauFil `  D )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574    X. cxp 5112   "cima 5117   ` cfv 5888  (class class class)co 6650   0cc0 9936   RR+crp 11832   [,)cico 12177   *Metcxmt 19731   Filcfil 21649  CauFilccfil 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-xmet 19739  df-cfil 23053
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator