MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cff Structured version   Visualization version   Unicode version

Theorem cff 9070
Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cff  |-  cf : On
--> On

Proof of Theorem cff
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cf 8767 . 2  |-  cf  =  ( x  e.  On  |->  |^|
{ y  |  E. z ( y  =  ( card `  z
)  /\  ( z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v
) ) } )
2 cardon 8770 . . . . . . 7  |-  ( card `  z )  e.  On
3 eleq1 2689 . . . . . . 7  |-  ( y  =  ( card `  z
)  ->  ( y  e.  On  <->  ( card `  z
)  e.  On ) )
42, 3mpbiri 248 . . . . . 6  |-  ( y  =  ( card `  z
)  ->  y  e.  On )
54adantr 481 . . . . 5  |-  ( ( y  =  ( card `  z )  /\  (
z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v ) )  -> 
y  e.  On )
65exlimiv 1858 . . . 4  |-  ( E. z ( y  =  ( card `  z
)  /\  ( z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v
) )  ->  y  e.  On )
76abssi 3677 . . 3  |-  { y  |  E. z ( y  =  ( card `  z )  /\  (
z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v ) ) } 
C_  On
8 cflem 9068 . . . 4  |-  ( x  e.  On  ->  E. y E. z ( y  =  ( card `  z
)  /\  ( z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v
) ) )
9 abn0 3954 . . . 4  |-  ( { y  |  E. z
( y  =  (
card `  z )  /\  ( z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v ) ) }  =/=  (/)  <->  E. y E. z ( y  =  ( card `  z
)  /\  ( z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v
) ) )
108, 9sylibr 224 . . 3  |-  ( x  e.  On  ->  { y  |  E. z ( y  =  ( card `  z )  /\  (
z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v ) ) }  =/=  (/) )
11 oninton 7000 . . 3  |-  ( ( { y  |  E. z ( y  =  ( card `  z
)  /\  ( z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v
) ) }  C_  On  /\  { y  |  E. z ( y  =  ( card `  z
)  /\  ( z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v
) ) }  =/=  (/) )  ->  |^| { y  |  E. z ( y  =  ( card `  z )  /\  (
z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v ) ) }  e.  On )
127, 10, 11sylancr 695 . 2  |-  ( x  e.  On  ->  |^| { y  |  E. z ( y  =  ( card `  z )  /\  (
z  C_  x  /\  A. w  e.  x  E. v  e.  z  w  C_  v ) ) }  e.  On )
131, 12fmpti 6383 1  |-  cf : On
--> On
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   |^|cint 4475   Oncon0 5723   -->wf 5884   ` cfv 5888   cardccrd 8761   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-card 8765  df-cf 8767
This theorem is referenced by:  cfub  9071  cardcf  9074  cflecard  9075  cfle  9076  cflim2  9085  cfidm  9097
  Copyright terms: Public domain W3C validator