| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cidfval | Structured version Visualization version Unicode version | ||
| Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| cidfval.b |
|
| cidfval.h |
|
| cidfval.o |
|
| cidfval.c |
|
| cidfval.i |
|
| Ref | Expression |
|---|---|
| cidfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cidfval.i |
. 2
| |
| 2 | cidfval.c |
. . 3
| |
| 3 | fvexd 6203 |
. . . . 5
| |
| 4 | fveq2 6191 |
. . . . . 6
| |
| 5 | cidfval.b |
. . . . . 6
| |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . 5
|
| 7 | fvexd 6203 |
. . . . . 6
| |
| 8 | simpl 473 |
. . . . . . . 8
| |
| 9 | 8 | fveq2d 6195 |
. . . . . . 7
|
| 10 | cidfval.h |
. . . . . . 7
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . 6
|
| 12 | fvexd 6203 |
. . . . . . 7
| |
| 13 | simpll 790 |
. . . . . . . . 9
| |
| 14 | 13 | fveq2d 6195 |
. . . . . . . 8
|
| 15 | cidfval.o |
. . . . . . . 8
| |
| 16 | 14, 15 | syl6eqr 2674 |
. . . . . . 7
|
| 17 | simpllr 799 |
. . . . . . . 8
| |
| 18 | simplr 792 |
. . . . . . . . . 10
| |
| 19 | 18 | oveqd 6667 |
. . . . . . . . 9
|
| 20 | 18 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 21 | simpr 477 |
. . . . . . . . . . . . . . 15
| |
| 22 | 21 | oveqd 6667 |
. . . . . . . . . . . . . 14
|
| 23 | 22 | oveqd 6667 |
. . . . . . . . . . . . 13
|
| 24 | 23 | eqeq1d 2624 |
. . . . . . . . . . . 12
|
| 25 | 20, 24 | raleqbidv 3152 |
. . . . . . . . . . 11
|
| 26 | 18 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 27 | 21 | oveqd 6667 |
. . . . . . . . . . . . . 14
|
| 28 | 27 | oveqd 6667 |
. . . . . . . . . . . . 13
|
| 29 | 28 | eqeq1d 2624 |
. . . . . . . . . . . 12
|
| 30 | 26, 29 | raleqbidv 3152 |
. . . . . . . . . . 11
|
| 31 | 25, 30 | anbi12d 747 |
. . . . . . . . . 10
|
| 32 | 17, 31 | raleqbidv 3152 |
. . . . . . . . 9
|
| 33 | 19, 32 | riotaeqbidv 6614 |
. . . . . . . 8
|
| 34 | 17, 33 | mpteq12dv 4733 |
. . . . . . 7
|
| 35 | 12, 16, 34 | csbied2 3561 |
. . . . . 6
|
| 36 | 7, 11, 35 | csbied2 3561 |
. . . . 5
|
| 37 | 3, 6, 36 | csbied2 3561 |
. . . 4
|
| 38 | df-cid 16330 |
. . . 4
| |
| 39 | fvex 6201 |
. . . . . 6
| |
| 40 | 5, 39 | eqeltri 2697 |
. . . . 5
|
| 41 | 40 | mptex 6486 |
. . . 4
|
| 42 | 37, 38, 41 | fvmpt 6282 |
. . 3
|
| 43 | 2, 42 | syl 17 |
. 2
|
| 44 | 1, 43 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-cid 16330 |
| This theorem is referenced by: cidval 16338 cidfn 16340 catidd 16341 cidpropd 16370 |
| Copyright terms: Public domain | W3C validator |