Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climresmpt Structured version   Visualization version   Unicode version

Theorem climresmpt 39891
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
climresmpt.z  |-  Z  =  ( ZZ>= `  M )
climresmpt.f  |-  F  =  ( x  e.  Z  |->  A )
climresmpt.n  |-  ( ph  ->  N  e.  Z )
climresmpt.g  |-  G  =  ( x  e.  (
ZZ>= `  N )  |->  A )
Assertion
Ref Expression
climresmpt  |-  ( ph  ->  ( G  ~~>  B  <->  F  ~~>  B ) )
Distinct variable groups:    x, N    x, Z
Allowed substitution hints:    ph( x)    A( x)    B( x)    F( x)    G( x)    M( x)

Proof of Theorem climresmpt
StepHypRef Expression
1 climresmpt.f . . . . . 6  |-  F  =  ( x  e.  Z  |->  A )
21reseq1i 5392 . . . . 5  |-  ( F  |`  ( ZZ>= `  N )
)  =  ( ( x  e.  Z  |->  A )  |`  ( ZZ>= `  N ) )
32a1i 11 . . . 4  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  N ) )  =  ( ( x  e.  Z  |->  A )  |`  ( ZZ>= `  N )
) )
4 climresmpt.n . . . . . . . 8  |-  ( ph  ->  N  e.  Z )
5 climresmpt.z . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
64, 5syl6eleq 2711 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7 uzss 11708 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
86, 7syl 17 . . . . . 6  |-  ( ph  ->  ( ZZ>= `  N )  C_  ( ZZ>= `  M )
)
98, 5syl6sseqr 3652 . . . . 5  |-  ( ph  ->  ( ZZ>= `  N )  C_  Z )
10 resmpt 5449 . . . . 5  |-  ( (
ZZ>= `  N )  C_  Z  ->  ( ( x  e.  Z  |->  A )  |`  ( ZZ>= `  N )
)  =  ( x  e.  ( ZZ>= `  N
)  |->  A ) )
119, 10syl 17 . . . 4  |-  ( ph  ->  ( ( x  e.  Z  |->  A )  |`  ( ZZ>= `  N )
)  =  ( x  e.  ( ZZ>= `  N
)  |->  A ) )
12 climresmpt.g . . . . . 6  |-  G  =  ( x  e.  (
ZZ>= `  N )  |->  A )
1312eqcomi 2631 . . . . 5  |-  ( x  e.  ( ZZ>= `  N
)  |->  A )  =  G
1413a1i 11 . . . 4  |-  ( ph  ->  ( x  e.  (
ZZ>= `  N )  |->  A )  =  G )
153, 11, 143eqtrrd 2661 . . 3  |-  ( ph  ->  G  =  ( F  |`  ( ZZ>= `  N )
) )
1615breq1d 4663 . 2  |-  ( ph  ->  ( G  ~~>  B  <->  ( F  |`  ( ZZ>= `  N )
)  ~~>  B ) )
17 eluzelz 11697 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
186, 17syl 17 . . 3  |-  ( ph  ->  N  e.  ZZ )
19 fvex 6201 . . . . . . 7  |-  ( ZZ>= `  M )  e.  _V
205, 19eqeltri 2697 . . . . . 6  |-  Z  e. 
_V
2120mptex 6486 . . . . 5  |-  ( x  e.  Z  |->  A )  e.  _V
2221a1i 11 . . . 4  |-  ( ph  ->  ( x  e.  Z  |->  A )  e.  _V )
231, 22syl5eqel 2705 . . 3  |-  ( ph  ->  F  e.  _V )
24 climres 14306 . . 3  |-  ( ( N  e.  ZZ  /\  F  e.  _V )  ->  ( ( F  |`  ( ZZ>= `  N )
)  ~~>  B  <->  F  ~~>  B ) )
2518, 23, 24syl2anc 693 . 2  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  N )
)  ~~>  B  <->  F  ~~>  B ) )
2616, 25bitrd 268 1  |-  ( ph  ->  ( G  ~~>  B  <->  F  ~~>  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729    |` cres 5116   ` cfv 5888   ZZcz 11377   ZZ>=cuz 11687    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-clim 14219
This theorem is referenced by:  meaiininclem  40700
  Copyright terms: Public domain W3C validator