| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsun | Structured version Visualization version Unicode version | ||
| Description: A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| clsun.1 |
|
| Ref | Expression |
|---|---|
| clsun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundi 3879 |
. . . . . 6
| |
| 2 | 1 | fveq2i 6194 |
. . . . 5
|
| 3 | difss 3737 |
. . . . . . 7
| |
| 4 | difss 3737 |
. . . . . . 7
| |
| 5 | clsun.1 |
. . . . . . . 8
| |
| 6 | 5 | ntrin 20865 |
. . . . . . 7
|
| 7 | 3, 4, 6 | mp3an23 1416 |
. . . . . 6
|
| 8 | 7 | 3ad2ant1 1082 |
. . . . 5
|
| 9 | 2, 8 | syl5eq 2668 |
. . . 4
|
| 10 | simp1 1061 |
. . . . 5
| |
| 11 | unss 3787 |
. . . . . . 7
| |
| 12 | 11 | biimpi 206 |
. . . . . 6
|
| 13 | 12 | 3adant1 1079 |
. . . . 5
|
| 14 | 5 | ntrdif 20856 |
. . . . 5
|
| 15 | 10, 13, 14 | syl2anc 693 |
. . . 4
|
| 16 | 5 | ntrdif 20856 |
. . . . . . 7
|
| 17 | 16 | 3adant3 1081 |
. . . . . 6
|
| 18 | 5 | ntrdif 20856 |
. . . . . . 7
|
| 19 | 18 | 3adant2 1080 |
. . . . . 6
|
| 20 | 17, 19 | ineq12d 3815 |
. . . . 5
|
| 21 | difundi 3879 |
. . . . 5
| |
| 22 | 20, 21 | syl6eqr 2674 |
. . . 4
|
| 23 | 9, 15, 22 | 3eqtr3d 2664 |
. . 3
|
| 24 | 23 | difeq2d 3728 |
. 2
|
| 25 | 5 | clscld 20851 |
. . . . 5
|
| 26 | 10, 13, 25 | syl2anc 693 |
. . . 4
|
| 27 | 5 | cldss 20833 |
. . . 4
|
| 28 | 26, 27 | syl 17 |
. . 3
|
| 29 | dfss4 3858 |
. . 3
| |
| 30 | 28, 29 | sylib 208 |
. 2
|
| 31 | 5 | clsss3 20863 |
. . . . 5
|
| 32 | 31 | 3adant3 1081 |
. . . 4
|
| 33 | 5 | clsss3 20863 |
. . . . 5
|
| 34 | 33 | 3adant2 1080 |
. . . 4
|
| 35 | 32, 34 | jca 554 |
. . 3
|
| 36 | unss 3787 |
. . . 4
| |
| 37 | dfss4 3858 |
. . . 4
| |
| 38 | 36, 37 | bitri 264 |
. . 3
|
| 39 | 35, 38 | sylib 208 |
. 2
|
| 40 | 24, 30, 39 | 3eqtr3d 2664 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-top 20699 df-cld 20823 df-ntr 20824 df-cls 20825 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |