MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfrss Structured version   Visualization version   Unicode version

Theorem cncfrss 22694
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )

Proof of Theorem cncfrss
Dummy variables  a 
b  f  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 22681 . . 3  |-  -cn->  =  ( a  e.  ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
)  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
21elmpt2cl1 6877 . 2  |-  ( F  e.  ( A -cn-> B )  ->  A  e.  ~P CC )
32elpwid 4170 1  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934    < clt 10074    - cmin 10266   RR+crp 11832   abscabs 13974   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-cncf 22681
This theorem is referenced by:  cncff  22696  cncfi  22697  rescncf  22700  cncffvrn  22701  cncfco  22710  cncfmpt2f  22717  cncfcnvcn  22724  cncombf  23425  cnlimci  23653  ulmcn  24153  efmul2picn  30674  mulcncff  40081  subcncff  40093  negcncfg  40094  addcncff  40097  ioccncflimc  40098  icocncflimc  40102  divcncff  40104  cncfcompt2  40112
  Copyright terms: Public domain W3C validator