MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncombf Structured version   Visualization version   Unicode version

Theorem cncombf 23425
Description: The composition of a continuous function with a measurable function is measurable. (More generally,  G can be a Borel-measurable function, but notably the condition that  G be only measurable is too weak, the usual counterexample taking 
G to be the Cantor function and  F the indicator function of the  G-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncombf  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( G  o.  F )  e. MblFn )

Proof of Theorem cncombf
Dummy variables  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1063 . . . . 5  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  G  e.  ( B -cn-> CC ) )
2 cncff 22696 . . . . 5  |-  ( G  e.  ( B -cn-> CC )  ->  G : B
--> CC )
31, 2syl 17 . . . 4  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  G : B
--> CC )
4 simp2 1062 . . . 4  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  F : A
--> B )
5 fco 6058 . . . 4  |-  ( ( G : B --> CC  /\  F : A --> B )  ->  ( G  o.  F ) : A --> CC )
63, 4, 5syl2anc 693 . . 3  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( G  o.  F ) : A --> CC )
7 fdm 6051 . . . . . 6  |-  ( F : A --> B  ->  dom  F  =  A )
84, 7syl 17 . . . . 5  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  dom  F  =  A )
9 mbfdm 23395 . . . . . 6  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
1093ad2ant1 1082 . . . . 5  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  dom  F  e. 
dom  vol )
118, 10eqeltrrd 2702 . . . 4  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  A  e.  dom  vol )
12 mblss 23299 . . . 4  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
1311, 12syl 17 . . 3  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  A  C_  RR )
14 cnex 10017 . . . 4  |-  CC  e.  _V
15 reex 10027 . . . 4  |-  RR  e.  _V
16 elpm2r 7875 . . . 4  |-  ( ( ( CC  e.  _V  /\  RR  e.  _V )  /\  ( ( G  o.  F ) : A --> CC  /\  A  C_  RR ) )  ->  ( G  o.  F )  e.  ( CC  ^pm  RR ) )
1714, 15, 16mpanl12 718 . . 3  |-  ( ( ( G  o.  F
) : A --> CC  /\  A  C_  RR )  -> 
( G  o.  F
)  e.  ( CC 
^pm  RR ) )
186, 13, 17syl2anc 693 . 2  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( G  o.  F )  e.  ( CC  ^pm  RR )
)
19 recncf 22705 . . . . . . . 8  |-  Re  e.  ( CC -cn-> RR )
2019a1i 11 . . . . . . 7  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  Re  e.  ( CC -cn-> RR ) )
211, 20cncfco 22710 . . . . . 6  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( Re  o.  G )  e.  ( B -cn-> RR ) )
2221adantr 481 . . . . 5  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  (
Re  o.  G )  e.  ( B -cn-> RR ) )
23 cnvco 5308 . . . . . . . . . 10  |-  `' ( g  o.  F )  =  ( `' F  o.  `' g )
2423imaeq1i 5463 . . . . . . . . 9  |-  ( `' ( g  o.  F
) " x )  =  ( ( `' F  o.  `' g ) " x )
25 imaco 5640 . . . . . . . . 9  |-  ( ( `' F  o.  `' g ) " x
)  =  ( `' F " ( `' g " x ) )
2624, 25eqtri 2644 . . . . . . . 8  |-  ( `' ( g  o.  F
) " x )  =  ( `' F " ( `' g "
x ) )
27 simplll 798 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  F  e. MblFn )
28 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  F : A
--> B )
29 cncfrss 22694 . . . . . . . . . 10  |-  ( g  e.  ( B -cn-> RR )  ->  B  C_  CC )
3029adantl 482 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  B  C_  CC )
31 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  g  e.  ( B -cn-> RR ) )
32 ax-resscn 9993 . . . . . . . . . . . 12  |-  RR  C_  CC
33 eqid 2622 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
34 eqid 2622 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )t  B )  =  ( ( TopOpen ` fld )t  B )
3533tgioo2 22606 . . . . . . . . . . . . 13  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
3633, 34, 35cncfcn 22712 . . . . . . . . . . . 12  |-  ( ( B  C_  CC  /\  RR  C_  CC )  ->  ( B -cn-> RR )  =  ( ( ( TopOpen ` fld )t  B )  Cn  ( topGen `
 ran  (,) )
) )
3730, 32, 36sylancl 694 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  ( B -cn->
RR )  =  ( ( ( TopOpen ` fld )t  B )  Cn  ( topGen `
 ran  (,) )
) )
3831, 37eleqtrd 2703 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  g  e.  ( ( ( TopOpen ` fld )t  B
)  Cn  ( topGen ` 
ran  (,) ) ) )
39 retopbas 22564 . . . . . . . . . . . 12  |-  ran  (,)  e. 
TopBases
40 bastg 20770 . . . . . . . . . . . 12  |-  ( ran 
(,)  e.  TopBases  ->  ran  (,)  C_  ( topGen `  ran  (,) )
)
4139, 40ax-mp 5 . . . . . . . . . . 11  |-  ran  (,)  C_  ( topGen `  ran  (,) )
42 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  x  e.  ran  (,) )
4341, 42sseldi 3601 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  x  e.  ( topGen `  ran  (,) )
)
44 cnima 21069 . . . . . . . . . 10  |-  ( ( g  e.  ( ( ( TopOpen ` fld )t  B )  Cn  ( topGen `
 ran  (,) )
)  /\  x  e.  ( topGen `  ran  (,) )
)  ->  ( `' g " x )  e.  ( ( TopOpen ` fld )t  B ) )
4538, 43, 44syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  ( `' g " x )  e.  ( ( TopOpen ` fld )t  B ) )
4633, 34mbfimaopn2 23424 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  ( `' g " x
)  e.  ( (
TopOpen ` fld )t  B ) )  -> 
( `' F "
( `' g "
x ) )  e. 
dom  vol )
4727, 28, 30, 45, 46syl31anc 1329 . . . . . . . 8  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  ( `' F " ( `' g
" x ) )  e.  dom  vol )
4826, 47syl5eqel 2705 . . . . . . 7  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  ( `' ( g  o.  F
) " x )  e.  dom  vol )
4948ralrimiva 2966 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  ->  A. g  e.  ( B -cn-> RR ) ( `' ( g  o.  F
) " x )  e.  dom  vol )
50493adantl3 1219 . . . . 5  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  A. g  e.  ( B -cn-> RR ) ( `' ( g  o.  F ) "
x )  e.  dom  vol )
51 coeq1 5279 . . . . . . . . . 10  |-  ( g  =  ( Re  o.  G )  ->  (
g  o.  F )  =  ( ( Re  o.  G )  o.  F ) )
52 coass 5654 . . . . . . . . . 10  |-  ( ( Re  o.  G )  o.  F )  =  ( Re  o.  ( G  o.  F )
)
5351, 52syl6eq 2672 . . . . . . . . 9  |-  ( g  =  ( Re  o.  G )  ->  (
g  o.  F )  =  ( Re  o.  ( G  o.  F
) ) )
5453cnveqd 5298 . . . . . . . 8  |-  ( g  =  ( Re  o.  G )  ->  `' ( g  o.  F
)  =  `' ( Re  o.  ( G  o.  F ) ) )
5554imaeq1d 5465 . . . . . . 7  |-  ( g  =  ( Re  o.  G )  ->  ( `' ( g  o.  F ) " x
)  =  ( `' ( Re  o.  ( G  o.  F )
) " x ) )
5655eleq1d 2686 . . . . . 6  |-  ( g  =  ( Re  o.  G )  ->  (
( `' ( g  o.  F ) "
x )  e.  dom  vol  <->  ( `' ( Re  o.  ( G  o.  F
) ) " x
)  e.  dom  vol ) )
5756rspcv 3305 . . . . 5  |-  ( ( Re  o.  G )  e.  ( B -cn-> RR )  ->  ( A. g  e.  ( B -cn->
RR ) ( `' ( g  o.  F
) " x )  e.  dom  vol  ->  ( `' ( Re  o.  ( G  o.  F
) ) " x
)  e.  dom  vol ) )
5822, 50, 57sylc 65 . . . 4  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  ( `' ( Re  o.  ( G  o.  F
) ) " x
)  e.  dom  vol )
59 imcncf 22706 . . . . . . . 8  |-  Im  e.  ( CC -cn-> RR )
6059a1i 11 . . . . . . 7  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  Im  e.  ( CC -cn-> RR ) )
611, 60cncfco 22710 . . . . . 6  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( Im  o.  G )  e.  ( B -cn-> RR ) )
6261adantr 481 . . . . 5  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  (
Im  o.  G )  e.  ( B -cn-> RR ) )
63 coeq1 5279 . . . . . . . . . 10  |-  ( g  =  ( Im  o.  G )  ->  (
g  o.  F )  =  ( ( Im  o.  G )  o.  F ) )
64 coass 5654 . . . . . . . . . 10  |-  ( ( Im  o.  G )  o.  F )  =  ( Im  o.  ( G  o.  F )
)
6563, 64syl6eq 2672 . . . . . . . . 9  |-  ( g  =  ( Im  o.  G )  ->  (
g  o.  F )  =  ( Im  o.  ( G  o.  F
) ) )
6665cnveqd 5298 . . . . . . . 8  |-  ( g  =  ( Im  o.  G )  ->  `' ( g  o.  F
)  =  `' ( Im  o.  ( G  o.  F ) ) )
6766imaeq1d 5465 . . . . . . 7  |-  ( g  =  ( Im  o.  G )  ->  ( `' ( g  o.  F ) " x
)  =  ( `' ( Im  o.  ( G  o.  F )
) " x ) )
6867eleq1d 2686 . . . . . 6  |-  ( g  =  ( Im  o.  G )  ->  (
( `' ( g  o.  F ) "
x )  e.  dom  vol  <->  ( `' ( Im  o.  ( G  o.  F
) ) " x
)  e.  dom  vol ) )
6968rspcv 3305 . . . . 5  |-  ( ( Im  o.  G )  e.  ( B -cn-> RR )  ->  ( A. g  e.  ( B -cn->
RR ) ( `' ( g  o.  F
) " x )  e.  dom  vol  ->  ( `' ( Im  o.  ( G  o.  F
) ) " x
)  e.  dom  vol ) )
7062, 50, 69sylc 65 . . . 4  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  ( `' ( Im  o.  ( G  o.  F
) ) " x
)  e.  dom  vol )
7158, 70jca 554 . . 3  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  (
( `' ( Re  o.  ( G  o.  F ) ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  ( G  o.  F ) )
" x )  e. 
dom  vol ) )
7271ralrimiva 2966 . 2  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  A. x  e.  ran  (,) ( ( `' ( Re  o.  ( G  o.  F
) ) " x
)  e.  dom  vol  /\  ( `' ( Im  o.  ( G  o.  F ) ) "
x )  e.  dom  vol ) )
73 ismbf1 23393 . 2  |-  ( ( G  o.  F )  e. MblFn 
<->  ( ( G  o.  F )  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  ( G  o.  F ) )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  ( G  o.  F )
) " x )  e.  dom  vol )
) )
7418, 72, 73sylanbrc 698 1  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( G  o.  F )  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935   (,)cioo 12175   Recre 13837   Imcim 13838   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   TopBasesctb 20749    Cn ccn 21028   -cn->ccncf 22679   volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388
This theorem is referenced by:  iblabslem  23594  iblabs  23595  bddmulibl  23605
  Copyright terms: Public domain W3C validator