| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptcom | Structured version Visualization version Unicode version | ||
| Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnmptcom.3 |
|
| cnmptcom.4 |
|
| cnmptcom.6 |
|
| Ref | Expression |
|---|---|
| cnmptcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptcom.3 |
. . . . . . . . 9
| |
| 2 | cnmptcom.4 |
. . . . . . . . 9
| |
| 3 | txtopon 21394 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. . . . . . . 8
|
| 5 | cnmptcom.6 |
. . . . . . . . . 10
| |
| 6 | cntop2 21045 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | syl 17 |
. . . . . . . . 9
|
| 8 | eqid 2622 |
. . . . . . . . . 10
| |
| 9 | 8 | toptopon 20722 |
. . . . . . . . 9
|
| 10 | 7, 9 | sylib 208 |
. . . . . . . 8
|
| 11 | cnf2 21053 |
. . . . . . . 8
| |
| 12 | 4, 10, 5, 11 | syl3anc 1326 |
. . . . . . 7
|
| 13 | eqid 2622 |
. . . . . . . . 9
| |
| 14 | 13 | fmpt2 7237 |
. . . . . . . 8
|
| 15 | ralcom 3098 |
. . . . . . . 8
| |
| 16 | 14, 15 | bitr3i 266 |
. . . . . . 7
|
| 17 | 12, 16 | sylib 208 |
. . . . . 6
|
| 18 | eqid 2622 |
. . . . . . 7
| |
| 19 | 18 | fmpt2 7237 |
. . . . . 6
|
| 20 | 17, 19 | sylib 208 |
. . . . 5
|
| 21 | ffn 6045 |
. . . . 5
| |
| 22 | 20, 21 | syl 17 |
. . . 4
|
| 23 | fnov 6768 |
. . . 4
| |
| 24 | 22, 23 | sylib 208 |
. . 3
|
| 25 | nfcv 2764 |
. . . . . . 7
| |
| 26 | nfcv 2764 |
. . . . . . 7
| |
| 27 | nfcv 2764 |
. . . . . . 7
| |
| 28 | nfv 1843 |
. . . . . . . 8
| |
| 29 | nfcv 2764 |
. . . . . . . . . 10
| |
| 30 | nfmpt22 6723 |
. . . . . . . . . 10
| |
| 31 | 29, 30, 25 | nfov 6676 |
. . . . . . . . 9
|
| 32 | nfmpt21 6722 |
. . . . . . . . . 10
| |
| 33 | 25, 32, 29 | nfov 6676 |
. . . . . . . . 9
|
| 34 | 31, 33 | nfeq 2776 |
. . . . . . . 8
|
| 35 | 28, 34 | nfim 1825 |
. . . . . . 7
|
| 36 | nfv 1843 |
. . . . . . . 8
| |
| 37 | nfmpt21 6722 |
. . . . . . . . . 10
| |
| 38 | 27, 37, 26 | nfov 6676 |
. . . . . . . . 9
|
| 39 | nfmpt22 6723 |
. . . . . . . . . 10
| |
| 40 | 26, 39, 27 | nfov 6676 |
. . . . . . . . 9
|
| 41 | 38, 40 | nfeq 2776 |
. . . . . . . 8
|
| 42 | 36, 41 | nfim 1825 |
. . . . . . 7
|
| 43 | oveq2 6658 |
. . . . . . . . 9
| |
| 44 | oveq1 6657 |
. . . . . . . . 9
| |
| 45 | 43, 44 | eqeq12d 2637 |
. . . . . . . 8
|
| 46 | 45 | imbi2d 330 |
. . . . . . 7
|
| 47 | oveq1 6657 |
. . . . . . . . 9
| |
| 48 | oveq2 6658 |
. . . . . . . . 9
| |
| 49 | 47, 48 | eqeq12d 2637 |
. . . . . . . 8
|
| 50 | 49 | imbi2d 330 |
. . . . . . 7
|
| 51 | rsp2 2936 |
. . . . . . . . 9
| |
| 52 | 51, 17 | syl11 33 |
. . . . . . . 8
|
| 53 | 13 | ovmpt4g 6783 |
. . . . . . . . . . 11
|
| 54 | 53 | 3com12 1269 |
. . . . . . . . . 10
|
| 55 | 18 | ovmpt4g 6783 |
. . . . . . . . . 10
|
| 56 | 54, 55 | eqtr4d 2659 |
. . . . . . . . 9
|
| 57 | 56 | 3expia 1267 |
. . . . . . . 8
|
| 58 | 52, 57 | syld 47 |
. . . . . . 7
|
| 59 | 25, 26, 27, 35, 42, 46, 50, 58 | vtocl2gaf 3273 |
. . . . . 6
|
| 60 | 59 | com12 32 |
. . . . 5
|
| 61 | 60 | 3impib 1262 |
. . . 4
|
| 62 | 61 | mpt2eq3dva 6719 |
. . 3
|
| 63 | 24, 62 | eqtr4d 2659 |
. 2
|
| 64 | 2, 1 | cnmpt2nd 21472 |
. . 3
|
| 65 | 2, 1 | cnmpt1st 21471 |
. . 3
|
| 66 | 2, 1, 64, 65, 5 | cnmpt22f 21478 |
. 2
|
| 67 | 63, 66 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 df-tx 21365 |
| This theorem is referenced by: cnmpt2k 21491 htpycc 22779 |
| Copyright terms: Public domain | W3C validator |