MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpcnv Structured version   Visualization version   Unicode version

Theorem relexpcnv 13775
Description: Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpcnv  |-  ( ( N  e.  NN0  /\  R  e.  V )  ->  `' ( R ^r  N )  =  ( `' R ^r  N ) )

Proof of Theorem relexpcnv
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11294 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 oveq2 6658 . . . . . . . 8  |-  ( n  =  1  ->  ( R ^r  n )  =  ( R ^r  1 ) )
32cnveqd 5298 . . . . . . 7  |-  ( n  =  1  ->  `' ( R ^r 
n )  =  `' ( R ^r 
1 ) )
4 oveq2 6658 . . . . . . 7  |-  ( n  =  1  ->  ( `' R ^r 
n )  =  ( `' R ^r 
1 ) )
53, 4eqeq12d 2637 . . . . . 6  |-  ( n  =  1  ->  ( `' ( R ^r  n )  =  ( `' R ^r  n )  <->  `' ( R ^r  1 )  =  ( `' R ^r  1 ) ) )
65imbi2d 330 . . . . 5  |-  ( n  =  1  ->  (
( R  e.  V  ->  `' ( R ^r  n )  =  ( `' R ^r  n ) )  <-> 
( R  e.  V  ->  `' ( R ^r  1 )  =  ( `' R ^r  1 ) ) ) )
7 oveq2 6658 . . . . . . . 8  |-  ( n  =  m  ->  ( R ^r  n )  =  ( R ^r  m ) )
87cnveqd 5298 . . . . . . 7  |-  ( n  =  m  ->  `' ( R ^r 
n )  =  `' ( R ^r 
m ) )
9 oveq2 6658 . . . . . . 7  |-  ( n  =  m  ->  ( `' R ^r 
n )  =  ( `' R ^r 
m ) )
108, 9eqeq12d 2637 . . . . . 6  |-  ( n  =  m  ->  ( `' ( R ^r  n )  =  ( `' R ^r  n )  <->  `' ( R ^r  m )  =  ( `' R ^r  m ) ) )
1110imbi2d 330 . . . . 5  |-  ( n  =  m  ->  (
( R  e.  V  ->  `' ( R ^r  n )  =  ( `' R ^r  n ) )  <-> 
( R  e.  V  ->  `' ( R ^r  m )  =  ( `' R ^r  m ) ) ) )
12 oveq2 6658 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  ( R ^r  n )  =  ( R ^r  ( m  + 
1 ) ) )
1312cnveqd 5298 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  `' ( R ^r 
n )  =  `' ( R ^r 
( m  +  1 ) ) )
14 oveq2 6658 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  ( `' R ^r 
n )  =  ( `' R ^r 
( m  +  1 ) ) )
1513, 14eqeq12d 2637 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  ( `' ( R ^r  n )  =  ( `' R ^r  n )  <->  `' ( R ^r  ( m  +  1 ) )  =  ( `' R ^r  ( m  +  1 ) ) ) )
1615imbi2d 330 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( R  e.  V  ->  `' ( R ^r  n )  =  ( `' R ^r  n ) )  <-> 
( R  e.  V  ->  `' ( R ^r  ( m  + 
1 ) )  =  ( `' R ^r  ( m  + 
1 ) ) ) ) )
17 oveq2 6658 . . . . . . . 8  |-  ( n  =  N  ->  ( R ^r  n )  =  ( R ^r  N ) )
1817cnveqd 5298 . . . . . . 7  |-  ( n  =  N  ->  `' ( R ^r 
n )  =  `' ( R ^r  N ) )
19 oveq2 6658 . . . . . . 7  |-  ( n  =  N  ->  ( `' R ^r 
n )  =  ( `' R ^r  N ) )
2018, 19eqeq12d 2637 . . . . . 6  |-  ( n  =  N  ->  ( `' ( R ^r  n )  =  ( `' R ^r  n )  <->  `' ( R ^r  N )  =  ( `' R ^r  N ) ) )
2120imbi2d 330 . . . . 5  |-  ( n  =  N  ->  (
( R  e.  V  ->  `' ( R ^r  n )  =  ( `' R ^r  n ) )  <-> 
( R  e.  V  ->  `' ( R ^r  N )  =  ( `' R ^r  N ) ) ) )
22 relexp1g 13766 . . . . . . 7  |-  ( R  e.  V  ->  ( R ^r  1 )  =  R )
2322cnveqd 5298 . . . . . 6  |-  ( R  e.  V  ->  `' ( R ^r 
1 )  =  `' R )
24 cnvexg 7112 . . . . . . 7  |-  ( R  e.  V  ->  `' R  e.  _V )
25 relexp1g 13766 . . . . . . 7  |-  ( `' R  e.  _V  ->  ( `' R ^r 
1 )  =  `' R )
2624, 25syl 17 . . . . . 6  |-  ( R  e.  V  ->  ( `' R ^r 
1 )  =  `' R )
2723, 26eqtr4d 2659 . . . . 5  |-  ( R  e.  V  ->  `' ( R ^r 
1 )  =  ( `' R ^r 
1 ) )
28 cnvco 5308 . . . . . . . . 9  |-  `' ( ( R ^r 
m )  o.  R
)  =  ( `' R  o.  `' ( R ^r  m ) )
29 simp3 1063 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  R  e.  V  /\  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  `' ( R ^r  m )  =  ( `' R ^r  m ) )
3029coeq2d 5284 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  R  e.  V  /\  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  ( `' R  o.  `' ( R ^r  m ) )  =  ( `' R  o.  ( `' R ^r  m ) ) )
3128, 30syl5eq 2668 . . . . . . . 8  |-  ( ( m  e.  NN  /\  R  e.  V  /\  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  `' ( ( R ^r  m )  o.  R )  =  ( `' R  o.  ( `' R ^r  m ) ) )
32 simp2 1062 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  R  e.  V  /\  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  R  e.  V
)
33 simp1 1061 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  R  e.  V  /\  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  m  e.  NN )
34 relexpsucnnr 13765 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  m  e.  NN )  ->  ( R ^r 
( m  +  1 ) )  =  ( ( R ^r 
m )  o.  R
) )
3532, 33, 34syl2anc 693 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  R  e.  V  /\  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  ( R ^r  ( m  + 
1 ) )  =  ( ( R ^r  m )  o.  R ) )
3635cnveqd 5298 . . . . . . . 8  |-  ( ( m  e.  NN  /\  R  e.  V  /\  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  `' ( R ^r  ( m  +  1 ) )  =  `' ( ( R ^r  m )  o.  R ) )
3732, 24syl 17 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  R  e.  V  /\  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  `' R  e. 
_V )
38 relexpsucnnl 13772 . . . . . . . . 9  |-  ( ( `' R  e.  _V  /\  m  e.  NN )  ->  ( `' R ^r  ( m  +  1 ) )  =  ( `' R  o.  ( `' R ^r  m ) ) )
3937, 33, 38syl2anc 693 . . . . . . . 8  |-  ( ( m  e.  NN  /\  R  e.  V  /\  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  ( `' R ^r  ( m  +  1 ) )  =  ( `' R  o.  ( `' R ^r  m ) ) )
4031, 36, 393eqtr4d 2666 . . . . . . 7  |-  ( ( m  e.  NN  /\  R  e.  V  /\  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  `' ( R ^r  ( m  +  1 ) )  =  ( `' R ^r  ( m  +  1 ) ) )
41403exp 1264 . . . . . 6  |-  ( m  e.  NN  ->  ( R  e.  V  ->  ( `' ( R ^r  m )  =  ( `' R ^r  m )  ->  `' ( R ^r  ( m  + 
1 ) )  =  ( `' R ^r  ( m  + 
1 ) ) ) ) )
4241a2d 29 . . . . 5  |-  ( m  e.  NN  ->  (
( R  e.  V  ->  `' ( R ^r  m )  =  ( `' R ^r  m ) )  ->  ( R  e.  V  ->  `' ( R ^r  ( m  +  1 ) )  =  ( `' R ^r  ( m  +  1 ) ) ) ) )
436, 11, 16, 21, 27, 42nnind 11038 . . . 4  |-  ( N  e.  NN  ->  ( R  e.  V  ->  `' ( R ^r  N )  =  ( `' R ^r  N ) ) )
44 cnvresid 5968 . . . . . . 7  |-  `' (  _I  |`  ( dom  R  u.  ran  R ) )  =  (  _I  |`  ( dom  R  u.  ran  R ) )
45 uncom 3757 . . . . . . . . 9  |-  ( dom 
R  u.  ran  R
)  =  ( ran 
R  u.  dom  R
)
46 df-rn 5125 . . . . . . . . . 10  |-  ran  R  =  dom  `' R
47 dfdm4 5316 . . . . . . . . . 10  |-  dom  R  =  ran  `' R
4846, 47uneq12i 3765 . . . . . . . . 9  |-  ( ran 
R  u.  dom  R
)  =  ( dom  `' R  u.  ran  `' R )
4945, 48eqtri 2644 . . . . . . . 8  |-  ( dom 
R  u.  ran  R
)  =  ( dom  `' R  u.  ran  `' R )
5049reseq2i 5393 . . . . . . 7  |-  (  _I  |`  ( dom  R  u.  ran  R ) )  =  (  _I  |`  ( dom  `' R  u.  ran  `' R ) )
5144, 50eqtri 2644 . . . . . 6  |-  `' (  _I  |`  ( dom  R  u.  ran  R ) )  =  (  _I  |`  ( dom  `' R  u.  ran  `' R ) )
52 oveq2 6658 . . . . . . . 8  |-  ( N  =  0  ->  ( R ^r  N )  =  ( R ^r  0 ) )
53 relexp0g 13762 . . . . . . . 8  |-  ( R  e.  V  ->  ( R ^r  0 )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
5452, 53sylan9eq 2676 . . . . . . 7  |-  ( ( N  =  0  /\  R  e.  V )  ->  ( R ^r  N )  =  (  _I  |`  ( dom  R  u.  ran  R ) ) )
5554cnveqd 5298 . . . . . 6  |-  ( ( N  =  0  /\  R  e.  V )  ->  `' ( R ^r  N )  =  `' (  _I  |`  ( dom  R  u.  ran  R ) ) )
56 oveq2 6658 . . . . . . . 8  |-  ( N  =  0  ->  ( `' R ^r  N )  =  ( `' R ^r 
0 ) )
5756adantr 481 . . . . . . 7  |-  ( ( N  =  0  /\  R  e.  V )  ->  ( `' R ^r  N )  =  ( `' R ^r  0 ) )
58 simpr 477 . . . . . . . 8  |-  ( ( N  =  0  /\  R  e.  V )  ->  R  e.  V
)
59 relexp0g 13762 . . . . . . . 8  |-  ( `' R  e.  _V  ->  ( `' R ^r 
0 )  =  (  _I  |`  ( dom  `' R  u.  ran  `' R ) ) )
6058, 24, 593syl 18 . . . . . . 7  |-  ( ( N  =  0  /\  R  e.  V )  ->  ( `' R ^r  0 )  =  (  _I  |`  ( dom  `' R  u.  ran  `' R ) ) )
6157, 60eqtrd 2656 . . . . . 6  |-  ( ( N  =  0  /\  R  e.  V )  ->  ( `' R ^r  N )  =  (  _I  |`  ( dom  `' R  u.  ran  `' R ) ) )
6251, 55, 613eqtr4a 2682 . . . . 5  |-  ( ( N  =  0  /\  R  e.  V )  ->  `' ( R ^r  N )  =  ( `' R ^r  N ) )
6362ex 450 . . . 4  |-  ( N  =  0  ->  ( R  e.  V  ->  `' ( R ^r  N )  =  ( `' R ^r  N ) ) )
6443, 63jaoi 394 . . 3  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( R  e.  V  ->  `' ( R ^r  N )  =  ( `' R ^r  N ) ) )
651, 64sylbi 207 . 2  |-  ( N  e.  NN0  ->  ( R  e.  V  ->  `' ( R ^r  N )  =  ( `' R ^r  N ) ) )
6665imp 445 1  |-  ( ( N  e.  NN0  /\  R  e.  V )  ->  `' ( R ^r  N )  =  ( `' R ^r  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    _I cid 5023   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   NN0cn0 11292   ^r crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761
This theorem is referenced by:  relexpcnvd  13776  relexpnnrn  13785  relexpaddg  13793  relexpaddss  38010  cnvtrclfv  38016
  Copyright terms: Public domain W3C validator