MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3 Structured version   Visualization version   Unicode version

Theorem gsumval3 18308
Description: Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b  |-  B  =  ( Base `  G
)
gsumval3.0  |-  .0.  =  ( 0g `  G )
gsumval3.p  |-  .+  =  ( +g  `  G )
gsumval3.z  |-  Z  =  (Cntz `  G )
gsumval3.g  |-  ( ph  ->  G  e.  Mnd )
gsumval3.a  |-  ( ph  ->  A  e.  V )
gsumval3.f  |-  ( ph  ->  F : A --> B )
gsumval3.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumval3.m  |-  ( ph  ->  M  e.  NN )
gsumval3.h  |-  ( ph  ->  H : ( 1 ... M ) -1-1-> A
)
gsumval3.n  |-  ( ph  ->  ( F supp  .0.  )  C_ 
ran  H )
gsumval3.w  |-  W  =  ( ( F  o.  H ) supp  .0.  )
Assertion
Ref Expression
gsumval3  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )

Proof of Theorem gsumval3
Dummy variables  f 
k  m  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.g . . . . 5  |-  ( ph  ->  G  e.  Mnd )
2 gsumval3.a . . . . 5  |-  ( ph  ->  A  e.  V )
3 gsumval3.0 . . . . . 6  |-  .0.  =  ( 0g `  G )
43gsumz 17374 . . . . 5  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( x  e.  A  |->  .0.  ) )  =  .0.  )
51, 2, 4syl2anc 693 . . . 4  |-  ( ph  ->  ( G  gsumg  ( x  e.  A  |->  .0.  ) )  =  .0.  )
65adantr 481 . . 3  |-  ( (
ph  /\  W  =  (/) )  ->  ( G  gsumg  ( x  e.  A  |->  .0.  ) )  =  .0.  )
7 gsumval3.f . . . . . . 7  |-  ( ph  ->  F : A --> B )
87feqmptd 6249 . . . . . 6  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
98adantr 481 . . . . 5  |-  ( (
ph  /\  W  =  (/) )  ->  F  =  ( x  e.  A  |->  ( F `  x
) ) )
10 gsumval3.h . . . . . . . . . . . . . 14  |-  ( ph  ->  H : ( 1 ... M ) -1-1-> A
)
11 f1f 6101 . . . . . . . . . . . . . 14  |-  ( H : ( 1 ... M ) -1-1-> A  ->  H : ( 1 ... M ) --> A )
1210, 11syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  H : ( 1 ... M ) --> A )
1312ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  ->  H : ( 1 ... M ) --> A )
14 f1f1orn 6148 . . . . . . . . . . . . . . . 16  |-  ( H : ( 1 ... M ) -1-1-> A  ->  H : ( 1 ... M ) -1-1-onto-> ran  H )
1510, 14syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  H : ( 1 ... M ) -1-1-onto-> ran  H
)
1615adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  W  =  (/) )  ->  H :
( 1 ... M
)
-1-1-onto-> ran  H )
17 f1ocnv 6149 . . . . . . . . . . . . . 14  |-  ( H : ( 1 ... M ) -1-1-onto-> ran  H  ->  `' H : ran  H -1-1-onto-> ( 1 ... M ) )
18 f1of 6137 . . . . . . . . . . . . . 14  |-  ( `' H : ran  H -1-1-onto-> (
1 ... M )  ->  `' H : ran  H --> ( 1 ... M
) )
1916, 17, 183syl 18 . . . . . . . . . . . . 13  |-  ( (
ph  /\  W  =  (/) )  ->  `' H : ran  H --> ( 1 ... M ) )
2019ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( `' H `  x )  e.  ( 1 ... M ) )
21 fvco3 6275 . . . . . . . . . . . 12  |-  ( ( H : ( 1 ... M ) --> A  /\  ( `' H `  x )  e.  ( 1 ... M ) )  ->  ( ( F  o.  H ) `  ( `' H `  x ) )  =  ( F `  ( H `  ( `' H `  x )
) ) )
2213, 20, 21syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( ( F  o.  H ) `  ( `' H `  x ) )  =  ( F `
 ( H `  ( `' H `  x ) ) ) )
23 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  W  =  (/) )  ->  W  =  (/) )
2423difeq2d 3728 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  W  =  (/) )  ->  ( (
1 ... M )  \  W )  =  ( ( 1 ... M
)  \  (/) ) )
25 dif0 3950 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... M ) 
\  (/) )  =  ( 1 ... M )
2624, 25syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  W  =  (/) )  ->  ( (
1 ... M )  \  W )  =  ( 1 ... M ) )
2726adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( ( 1 ... M )  \  W
)  =  ( 1 ... M ) )
2820, 27eleqtrrd 2704 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( `' H `  x )  e.  ( ( 1 ... M
)  \  W )
)
29 fco 6058 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> B  /\  H : ( 1 ... M ) --> A )  ->  ( F  o.  H ) : ( 1 ... M ) --> B )
307, 12, 29syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  o.  H
) : ( 1 ... M ) --> B )
3130adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  W  =  (/) )  ->  ( F  o.  H ) : ( 1 ... M ) --> B )
32 gsumval3.w . . . . . . . . . . . . . . 15  |-  W  =  ( ( F  o.  H ) supp  .0.  )
3332eqimss2i 3660 . . . . . . . . . . . . . 14  |-  ( ( F  o.  H ) supp 
.0.  )  C_  W
3433a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  W  =  (/) )  ->  ( ( F  o.  H ) supp  .0.  )  C_  W )
35 ovexd 6680 . . . . . . . . . . . . 13  |-  ( (
ph  /\  W  =  (/) )  ->  ( 1 ... M )  e. 
_V )
36 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  e. 
_V
373, 36eqeltri 2697 . . . . . . . . . . . . . 14  |-  .0.  e.  _V
3837a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  W  =  (/) )  ->  .0.  e.  _V )
3931, 34, 35, 38suppssr 7326 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =  (/) )  /\  ( `' H `  x )  e.  ( ( 1 ... M )  \  W ) )  -> 
( ( F  o.  H ) `  ( `' H `  x ) )  =  .0.  )
4028, 39syldan 487 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( ( F  o.  H ) `  ( `' H `  x ) )  =  .0.  )
41 f1ocnvfv2 6533 . . . . . . . . . . . . 13  |-  ( ( H : ( 1 ... M ) -1-1-onto-> ran  H  /\  x  e.  ran  H )  ->  ( H `  ( `' H `  x ) )  =  x )
4216, 41sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( H `  ( `' H `  x ) )  =  x )
4342fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( F `  ( H `  ( `' H `  x )
) )  =  ( F `  x ) )
4422, 40, 433eqtr3rd 2665 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( F `  x
)  =  .0.  )
45 fvex 6201 . . . . . . . . . . 11  |-  ( F `
 x )  e. 
_V
4645elsn 4192 . . . . . . . . . 10  |-  ( ( F `  x )  e.  {  .0.  }  <->  ( F `  x )  =  .0.  )
4744, 46sylibr 224 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( F `  x
)  e.  {  .0.  } )
4847adantlr 751 . . . . . . . 8  |-  ( ( ( ( ph  /\  W  =  (/) )  /\  x  e.  A )  /\  x  e.  ran  H )  ->  ( F `  x )  e.  {  .0.  } )
49 eldif 3584 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  ran  H )  <->  ( x  e.  A  /\  -.  x  e.  ran  H ) )
50 gsumval3.n . . . . . . . . . . . . 13  |-  ( ph  ->  ( F supp  .0.  )  C_ 
ran  H )
5137a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  .0.  e.  _V )
527, 50, 2, 51suppssr 7326 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  \  ran  H
) )  ->  ( F `  x )  =  .0.  )
5352, 46sylibr 224 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  \  ran  H
) )  ->  ( F `  x )  e.  {  .0.  } )
5449, 53sylan2br 493 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  -.  x  e.  ran  H ) )  ->  ( F `  x )  e.  {  .0.  } )
5554adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =  (/) )  /\  (
x  e.  A  /\  -.  x  e.  ran  H ) )  ->  ( F `  x )  e.  {  .0.  } )
5655anassrs 680 . . . . . . . 8  |-  ( ( ( ( ph  /\  W  =  (/) )  /\  x  e.  A )  /\  -.  x  e.  ran  H )  ->  ( F `  x )  e.  {  .0.  } )
5748, 56pm2.61dan 832 . . . . . . 7  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  A )  ->  ( F `  x )  e.  {  .0.  } )
5857, 46sylib 208 . . . . . 6  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  A )  ->  ( F `  x )  =  .0.  )
5958mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  W  =  (/) )  ->  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  .0.  ) )
609, 59eqtrd 2656 . . . 4  |-  ( (
ph  /\  W  =  (/) )  ->  F  =  ( x  e.  A  |->  .0.  ) )
6160oveq2d 6666 . . 3  |-  ( (
ph  /\  W  =  (/) )  ->  ( G  gsumg  F )  =  ( G 
gsumg  ( x  e.  A  |->  .0.  ) ) )
62 gsumval3.b . . . . . . . 8  |-  B  =  ( Base `  G
)
6362, 3mndidcl 17308 . . . . . . 7  |-  ( G  e.  Mnd  ->  .0.  e.  B )
641, 63syl 17 . . . . . 6  |-  ( ph  ->  .0.  e.  B )
65 gsumval3.p . . . . . . 7  |-  .+  =  ( +g  `  G )
6662, 65, 3mndlid 17311 . . . . . 6  |-  ( ( G  e.  Mnd  /\  .0.  e.  B )  -> 
(  .0.  .+  .0.  )  =  .0.  )
671, 64, 66syl2anc 693 . . . . 5  |-  ( ph  ->  (  .0.  .+  .0.  )  =  .0.  )
6867adantr 481 . . . 4  |-  ( (
ph  /\  W  =  (/) )  ->  (  .0.  .+  .0.  )  =  .0.  )
69 gsumval3.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
70 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
7169, 70syl6eleq 2711 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
7271adantr 481 . . . 4  |-  ( (
ph  /\  W  =  (/) )  ->  M  e.  ( ZZ>= `  1 )
)
7326eleq2d 2687 . . . . . 6  |-  ( (
ph  /\  W  =  (/) )  ->  ( x  e.  ( ( 1 ... M )  \  W
)  <->  x  e.  (
1 ... M ) ) )
7473biimpar 502 . . . . 5  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ( 1 ... M
) )  ->  x  e.  ( ( 1 ... M )  \  W
) )
7531, 34, 35, 38suppssr 7326 . . . . 5  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ( ( 1 ... M )  \  W
) )  ->  (
( F  o.  H
) `  x )  =  .0.  )
7674, 75syldan 487 . . . 4  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ( 1 ... M
) )  ->  (
( F  o.  H
) `  x )  =  .0.  )
7768, 72, 76seqid3 12845 . . 3  |-  ( (
ph  /\  W  =  (/) )  ->  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
)  =  .0.  )
786, 61, 773eqtr4d 2666 . 2  |-  ( (
ph  /\  W  =  (/) )  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
) )
79 fzf 12330 . . . . 5  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
80 ffn 6045 . . . . 5  |-  ( ...
: ( ZZ  X.  ZZ ) --> ~P ZZ  ->  ... 
Fn  ( ZZ  X.  ZZ ) )
81 ovelrn 6810 . . . . 5  |-  ( ... 
Fn  ( ZZ  X.  ZZ )  ->  ( A  e.  ran  ...  <->  E. m  e.  ZZ  E. n  e.  ZZ  A  =  ( m ... n ) ) )
8279, 80, 81mp2b 10 . . . 4  |-  ( A  e.  ran  ...  <->  E. m  e.  ZZ  E. n  e.  ZZ  A  =  ( m ... n ) )
831ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  G  e.  Mnd )
84 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  A  =  ( m ... n ) )
85 frel 6050 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> B  ->  Rel  F )
86 reldm0 5343 . . . . . . . . . . . . . . . . 17  |-  ( Rel 
F  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
877, 85, 863syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
88 fdm 6051 . . . . . . . . . . . . . . . . . 18  |-  ( F : A --> B  ->  dom  F  =  A )
897, 88syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  =  A )
9089eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( dom  F  =  (/) 
<->  A  =  (/) ) )
9187, 90bitrd 268 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F  =  (/)  <->  A  =  (/) ) )
92 coeq1 5279 . . . . . . . . . . . . . . . . . . 19  |-  ( F  =  (/)  ->  ( F  o.  H )  =  ( (/)  o.  H
) )
93 co01 5650 . . . . . . . . . . . . . . . . . . 19  |-  ( (/)  o.  H )  =  (/)
9492, 93syl6eq 2672 . . . . . . . . . . . . . . . . . 18  |-  ( F  =  (/)  ->  ( F  o.  H )  =  (/) )
9594oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( F  =  (/)  ->  ( ( F  o.  H ) supp 
.0.  )  =  (
(/) supp  .0.  ) )
96 supp0 7300 . . . . . . . . . . . . . . . . . 18  |-  (  .0. 
e.  _V  ->  ( (/) supp  .0.  )  =  (/) )
9737, 96ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( (/) supp  .0.  )  =  (/)
9895, 97syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( F  =  (/)  ->  ( ( F  o.  H ) supp 
.0.  )  =  (/) )
9932, 98syl5eq 2668 . . . . . . . . . . . . . . 15  |-  ( F  =  (/)  ->  W  =  (/) )
10091, 99syl6bir 244 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  =  (/)  ->  W  =  (/) ) )
101100necon3d 2815 . . . . . . . . . . . . 13  |-  ( ph  ->  ( W  =/=  (/)  ->  A  =/=  (/) ) )
102101imp 445 . . . . . . . . . . . 12  |-  ( (
ph  /\  W  =/=  (/) )  ->  A  =/=  (/) )
103102adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  A  =/=  (/) )
10484, 103eqnetrrd 2862 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( m ... n
)  =/=  (/) )
105 fzn0 12355 . . . . . . . . . 10  |-  ( ( m ... n )  =/=  (/)  <->  n  e.  ( ZZ>=
`  m ) )
106104, 105sylib 208 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  n  e.  ( ZZ>= `  m ) )
1077ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  F : A --> B )
10884feq2d 6031 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( F : A --> B 
<->  F : ( m ... n ) --> B ) )
109107, 108mpbid 222 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  F : ( m ... n ) --> B )
11062, 65, 83, 106, 109gsumval2 17280 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( G  gsumg  F )  =  (  seq m (  .+  ,  F ) `  n
) )
111 frn 6053 . . . . . . . . . . . . . . 15  |-  ( H : ( 1 ... M ) --> A  ->  ran  H  C_  A )
11210, 11, 1113syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  H  C_  A
)
113112ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  ran  H  C_  A )
114113, 84sseqtrd 3641 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  ran  H  C_  ( m ... n ) )
115 fzssuz 12382 . . . . . . . . . . . . 13  |-  ( m ... n )  C_  ( ZZ>= `  m )
116 uzssz 11707 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  m )  C_  ZZ
117 zssre 11384 . . . . . . . . . . . . . 14  |-  ZZ  C_  RR
118116, 117sstri 3612 . . . . . . . . . . . . 13  |-  ( ZZ>= `  m )  C_  RR
119115, 118sstri 3612 . . . . . . . . . . . 12  |-  ( m ... n )  C_  RR
120114, 119syl6ss 3615 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  ran  H  C_  RR )
121 ltso 10118 . . . . . . . . . . 11  |-  <  Or  RR
122 soss 5053 . . . . . . . . . . 11  |-  ( ran 
H  C_  RR  ->  (  <  Or  RR  ->  < 
Or  ran  H )
)
123120, 121, 122mpisyl 21 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  <  Or  ran  H )
124 fzfi 12771 . . . . . . . . . . . 12  |-  ( 1 ... M )  e. 
Fin
125124a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
126 fex2 7121 . . . . . . . . . . . . . . 15  |-  ( ( H : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  Fin  /\  A  e.  V )  ->  H  e.  _V )
12712, 125, 2, 126syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  e.  _V )
128 f1oen3g 7971 . . . . . . . . . . . . . 14  |-  ( ( H  e.  _V  /\  H : ( 1 ... M ) -1-1-onto-> ran  H )  -> 
( 1 ... M
)  ~~  ran  H )
129127, 15, 128syl2anc 693 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1 ... M
)  ~~  ran  H )
130 enfi 8176 . . . . . . . . . . . . 13  |-  ( ( 1 ... M ) 
~~  ran  H  ->  ( ( 1 ... M
)  e.  Fin  <->  ran  H  e. 
Fin ) )
131129, 130syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1 ... M )  e.  Fin  <->  ran  H  e.  Fin ) )
132124, 131mpbii 223 . . . . . . . . . . 11  |-  ( ph  ->  ran  H  e.  Fin )
133132ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  ran  H  e.  Fin )
134 fz1iso 13246 . . . . . . . . . 10  |-  ( (  <  Or  ran  H  /\  ran  H  e.  Fin )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  ran  H ) ) ,  ran  H ) )
135123, 133, 134syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  ran  H ) ) ,  ran  H ) )
13669nnnn0d 11351 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  NN0 )
137 hashfz1 13134 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
138136, 137syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  M )
139 hashen 13135 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1 ... M
)  e.  Fin  /\  ran  H  e.  Fin )  ->  ( ( # `  (
1 ... M ) )  =  ( # `  ran  H )  <->  ( 1 ... M )  ~~  ran  H ) )
140124, 132, 139sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( # `  (
1 ... M ) )  =  ( # `  ran  H )  <->  ( 1 ... M )  ~~  ran  H ) )
141129, 140mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  ( # `  ran  H ) )
142138, 141eqtr3d 2658 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  =  ( # `  ran  H ) )
143142ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  M  =  ( # `  ran  H ) )
144143fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  f ) ) `  M )  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ran  H
) ) )
1451ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  G  e.  Mnd )
14662, 65mndcl 17301 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
1471463expb 1266 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
148145, 147sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
149 gsumval3.c . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
150149ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
151150sselda 3603 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ran  F )  ->  x  e.  ( Z `  ran  F
) )
152 gsumval3.z . . . . . . . . . . . . . . . 16  |-  Z  =  (Cntz `  G )
15365, 152cntzi 17762 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( Z `
 ran  F )  /\  y  e.  ran  F )  ->  ( x  .+  y )  =  ( y  .+  x ) )
154151, 153sylan 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  (
m ... n )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ran  F )  /\  y  e.  ran  F )  ->  ( x  .+  y )  =  ( y  .+  x ) )
155154anasss 679 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  ( x  e.  ran  F  /\  y  e.  ran  F ) )  ->  (
x  .+  y )  =  ( y  .+  x ) )
15662, 65mndass 17302 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
157145, 156sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
15871ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  M  e.  ( ZZ>= ` 
1 ) )
1597ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  F : A --> B )
160 frn 6053 . . . . . . . . . . . . . 14  |-  ( F : A --> B  ->  ran  F  C_  B )
161159, 160syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ran  F  C_  B )
162 simprr 796 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f  Isom  <  ,  <  ( ( 1 ... ( # `
 ran  H )
) ,  ran  H
) )
163 isof1o 6573 . . . . . . . . . . . . . . . . 17  |-  ( f 
Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
)  ->  f :
( 1 ... ( # `
 ran  H )
)
-1-1-onto-> ran  H )
164162, 163syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f : ( 1 ... ( # `  ran  H ) ) -1-1-onto-> ran  H )
165143oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( 1 ... M
)  =  ( 1 ... ( # `  ran  H ) ) )
166 f1oeq2 6128 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... M )  =  ( 1 ... ( # `  ran  H ) )  ->  (
f : ( 1 ... M ) -1-1-onto-> ran  H  <->  f : ( 1 ... ( # `  ran  H ) ) -1-1-onto-> ran  H ) )
167165, 166syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( f : ( 1 ... M ) -1-1-onto-> ran 
H  <->  f : ( 1 ... ( # `  ran  H ) ) -1-1-onto-> ran 
H ) )
168164, 167mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f : ( 1 ... M ) -1-1-onto-> ran  H
)
169 f1ocnv 6149 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... M ) -1-1-onto-> ran  H  ->  `' f : ran  H -1-1-onto-> ( 1 ... M ) )
170168, 169syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  `' f : ran  H -1-1-onto-> ( 1 ... M ) )
17115ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  H : ( 1 ... M ) -1-1-onto-> ran  H )
172 f1oco 6159 . . . . . . . . . . . . . 14  |-  ( ( `' f : ran  H -1-1-onto-> ( 1 ... M )  /\  H : ( 1 ... M ) -1-1-onto-> ran 
H )  ->  ( `' f  o.  H
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
173170, 171, 172syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( `' f  o.  H ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
174 ffn 6045 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> B  ->  F  Fn  A )
175 dffn4 6121 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
176174, 175sylib 208 . . . . . . . . . . . . . . . 16  |-  ( F : A --> B  ->  F : A -onto-> ran  F
)
177 fof 6115 . . . . . . . . . . . . . . . 16  |-  ( F : A -onto-> ran  F  ->  F : A --> ran  F
)
178159, 176, 1773syl 18 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  F : A --> ran  F
)
179 f1of 6137 . . . . . . . . . . . . . . . . 17  |-  ( f : ( 1 ... M ) -1-1-onto-> ran  H  ->  f : ( 1 ... M ) --> ran  H
)
180168, 179syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f : ( 1 ... M ) --> ran 
H )
181112ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ran  H  C_  A )
182180, 181fssd 6057 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f : ( 1 ... M ) --> A )
183 fco 6058 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> ran  F  /\  f : ( 1 ... M ) --> A )  ->  ( F  o.  f ) : ( 1 ... M ) --> ran  F )
184178, 182, 183syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( F  o.  f
) : ( 1 ... M ) --> ran 
F )
185184ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( 1 ... M ) )  ->  ( ( F  o.  f ) `  x )  e.  ran  F )
186 f1ococnv2 6163 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f : ( 1 ... M ) -1-1-onto-> ran  H  ->  (
f  o.  `' f )  =  (  _I  |`  ran  H ) )
187168, 186syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( f  o.  `' f )  =  (  _I  |`  ran  H ) )
188187coeq1d 5283 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( ( f  o.  `' f )  o.  H )  =  ( (  _I  |`  ran  H
)  o.  H ) )
189 f1of 6137 . . . . . . . . . . . . . . . . . . . . 21  |-  ( H : ( 1 ... M ) -1-1-onto-> ran  H  ->  H : ( 1 ... M ) --> ran  H
)
190 fcoi2 6079 . . . . . . . . . . . . . . . . . . . . 21  |-  ( H : ( 1 ... M ) --> ran  H  ->  ( (  _I  |`  ran  H
)  o.  H )  =  H )
191171, 189, 1903syl 18 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( (  _I  |`  ran  H
)  o.  H )  =  H )
192188, 191eqtr2d 2657 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  H  =  ( (
f  o.  `' f )  o.  H ) )
193 coass 5654 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  o.  `' f )  o.  H )  =  ( f  o.  ( `' f  o.  H ) )
194192, 193syl6eq 2672 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  H  =  ( f  o.  ( `' f  o.  H ) ) )
195194coeq2d 5284 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( F  o.  H
)  =  ( F  o.  ( f  o.  ( `' f  o.  H ) ) ) )
196 coass 5654 . . . . . . . . . . . . . . . . 17  |-  ( ( F  o.  f )  o.  ( `' f  o.  H ) )  =  ( F  o.  ( f  o.  ( `' f  o.  H
) ) )
197195, 196syl6eqr 2674 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( F  o.  H
)  =  ( ( F  o.  f )  o.  ( `' f  o.  H ) ) )
198197fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( ( F  o.  H ) `  k
)  =  ( ( ( F  o.  f
)  o.  ( `' f  o.  H ) ) `  k ) )
199198adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  k  e.  ( 1 ... M ) )  ->  ( ( F  o.  H ) `  k )  =  ( ( ( F  o.  f )  o.  ( `' f  o.  H
) ) `  k
) )
200 f1of 6137 . . . . . . . . . . . . . . . . 17  |-  ( `' f : ran  H -1-1-onto-> (
1 ... M )  ->  `' f : ran  H --> ( 1 ... M
) )
201168, 169, 2003syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  `' f : ran  H --> ( 1 ... M
) )
202171, 189syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  H : ( 1 ... M ) --> ran  H
)
203 fco 6058 . . . . . . . . . . . . . . . 16  |-  ( ( `' f : ran  H --> ( 1 ... M
)  /\  H :
( 1 ... M
) --> ran  H )  ->  ( `' f  o.  H ) : ( 1 ... M ) --> ( 1 ... M
) )
204201, 202, 203syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( `' f  o.  H ) : ( 1 ... M ) --> ( 1 ... M
) )
205 fvco3 6275 . . . . . . . . . . . . . . 15  |-  ( ( ( `' f  o.  H ) : ( 1 ... M ) --> ( 1 ... M
)  /\  k  e.  ( 1 ... M
) )  ->  (
( ( F  o.  f )  o.  ( `' f  o.  H
) ) `  k
)  =  ( ( F  o.  f ) `
 ( ( `' f  o.  H ) `
 k ) ) )
206204, 205sylan 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( F  o.  f )  o.  ( `' f  o.  H ) ) `
 k )  =  ( ( F  o.  f ) `  (
( `' f  o.  H ) `  k
) ) )
207199, 206eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  k  e.  ( 1 ... M ) )  ->  ( ( F  o.  H ) `  k )  =  ( ( F  o.  f
) `  ( ( `' f  o.  H
) `  k )
) )
208148, 155, 157, 158, 161, 173, 185, 207seqf1o 12842 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  H ) ) `  M )  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  M ) )
20962, 65, 3mndlid 17311 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  (  .0.  .+  x
)  =  x )
210145, 209sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  B )  ->  (  .0.  .+  x
)  =  x )
21162, 65, 3mndrid 17312 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( x  .+  .0.  )  =  x )
212145, 211sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  B )  ->  ( x  .+  .0.  )  =  x )
213145, 63syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  .0.  e.  B )
214 fdm 6051 . . . . . . . . . . . . . . . . 17  |-  ( H : ( 1 ... M ) --> A  ->  dom  H  =  ( 1 ... M ) )
21510, 11, 2143syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  H  =  ( 1 ... M ) )
216 eluzfz1 12348 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... M
) )
217 ne0i 3921 . . . . . . . . . . . . . . . . 17  |-  ( 1  e.  ( 1 ... M )  ->  (
1 ... M )  =/=  (/) )
21871, 216, 2173syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1 ... M
)  =/=  (/) )
219215, 218eqnetrd 2861 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  H  =/=  (/) )
220 dm0rn0 5342 . . . . . . . . . . . . . . . 16  |-  ( dom 
H  =  (/)  <->  ran  H  =  (/) )
221220necon3bii 2846 . . . . . . . . . . . . . . 15  |-  ( dom 
H  =/=  (/)  <->  ran  H  =/=  (/) )
222219, 221sylib 208 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  H  =/=  (/) )
223222ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ran  H  =/=  (/) )
224114adantrr 753 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ran  H  C_  ( m ... n ) )
225 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  A  =  ( m ... n ) )
226225eleq2d 2687 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( x  e.  A  <->  x  e.  ( m ... n ) ) )
227226biimpar 502 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( m ... n ) )  ->  x  e.  A )
228159ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
229227, 228syldan 487 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( m ... n ) )  -> 
( F `  x
)  e.  B )
230225difeq1d 3727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( A  \  ran  H )  =  ( ( m ... n ) 
\  ran  H )
)
231230eleq2d 2687 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( x  e.  ( A  \  ran  H
)  <->  x  e.  (
( m ... n
)  \  ran  H ) ) )
232231biimpar 502 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( (
m ... n )  \  ran  H ) )  ->  x  e.  ( A  \  ran  H ) )
233 simpll 790 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ph )
234233, 52sylan 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( A  \  ran  H ) )  ->  ( F `  x )  =  .0.  )
235232, 234syldan 487 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( (
m ... n )  \  ran  H ) )  -> 
( F `  x
)  =  .0.  )
236 f1of 6137 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( # `  ran  H ) ) -1-1-onto-> ran  H  ->  f : ( 1 ... ( # `  ran  H ) ) --> ran  H
)
237162, 163, 2363syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f : ( 1 ... ( # `  ran  H ) ) --> ran  H
)
238 fvco3 6275 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( # `  ran  H ) ) --> ran  H  /\  y  e.  (
1 ... ( # `  ran  H ) ) )  -> 
( ( F  o.  f ) `  y
)  =  ( F `
 ( f `  y ) ) )
239237, 238sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  y  e.  ( 1 ... ( # `  ran  H ) ) )  -> 
( ( F  o.  f ) `  y
)  =  ( F `
 ( f `  y ) ) )
240210, 212, 148, 213, 162, 223, 224, 229, 235, 239seqcoll2 13249 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
(  seq m (  .+  ,  F ) `  n
)  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ran  H )
) )
241144, 208, 2403eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  H ) ) `  M )  =  (  seq m (  .+  ,  F ) `  n
) )
242241expr 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( f  Isom  <  ,  <  ( ( 1 ... ( # `  ran  H ) ) ,  ran  H )  ->  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
)  =  (  seq m (  .+  ,  F ) `  n
) ) )
243242exlimdv 1861 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( E. f  f 
Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
)  ->  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
)  =  (  seq m (  .+  ,  F ) `  n
) ) )
244135, 243mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  H ) ) `  M )  =  (  seq m (  .+  ,  F ) `  n
) )
245110, 244eqtr4d 2659 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )
246245ex 450 . . . . . 6  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( A  =  ( m ... n )  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) ) )
247246rexlimdvw 3034 . . . . 5  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( E. n  e.  ZZ  A  =  ( m ... n )  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) ) )
248247rexlimdvw 3034 . . . 4  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( E. m  e.  ZZ  E. n  e.  ZZ  A  =  ( m ... n )  ->  ( G  gsumg  F )  =  (  seq 1
(  .+  ,  ( F  o.  H )
) `  M )
) )
24982, 248syl5bi 232 . . 3  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( A  e.  ran  ...  ->  ( G 
gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) ) )
250 suppssdm 7308 . . . . . . . . . . 11  |-  ( ( F  o.  H ) supp 
.0.  )  C_  dom  ( F  o.  H
)
25132, 250eqsstri 3635 . . . . . . . . . 10  |-  W  C_  dom  ( F  o.  H
)
252 fdm 6051 . . . . . . . . . . 11  |-  ( ( F  o.  H ) : ( 1 ... M ) --> B  ->  dom  ( F  o.  H
)  =  ( 1 ... M ) )
25330, 252syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  ( F  o.  H )  =  ( 1 ... M ) )
254251, 253syl5sseq 3653 . . . . . . . . 9  |-  ( ph  ->  W  C_  ( 1 ... M ) )
255 fzssuz 12382 . . . . . . . . . . 11  |-  ( 1 ... M )  C_  ( ZZ>= `  1 )
256255, 70sseqtr4i 3638 . . . . . . . . . 10  |-  ( 1 ... M )  C_  NN
257 nnssre 11024 . . . . . . . . . 10  |-  NN  C_  RR
258256, 257sstri 3612 . . . . . . . . 9  |-  ( 1 ... M )  C_  RR
259254, 258syl6ss 3615 . . . . . . . 8  |-  ( ph  ->  W  C_  RR )
260 soss 5053 . . . . . . . 8  |-  ( W 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  W ) )
261259, 121, 260mpisyl 21 . . . . . . 7  |-  ( ph  ->  <  Or  W )
262 ssfi 8180 . . . . . . . 8  |-  ( ( ( 1 ... M
)  e.  Fin  /\  W  C_  ( 1 ... M ) )  ->  W  e.  Fin )
263124, 254, 262sylancr 695 . . . . . . 7  |-  ( ph  ->  W  e.  Fin )
264 fz1iso 13246 . . . . . . 7  |-  ( (  <  Or  W  /\  W  e.  Fin )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) )
265261, 263, 264syl2anc 693 . . . . . 6  |-  ( ph  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) )
266265ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  -.  A  e.  ran  ... )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) )
26762, 3, 65, 152, 1, 2, 7, 149, 69, 10, 50, 32gsumval3lem2 18307 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) ) )
2681ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  G  e.  Mnd )
269268, 209sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  x  e.  B )  ->  (  .0.  .+  x
)  =  x )
270268, 211sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  x  e.  B )  ->  ( x  .+  .0.  )  =  x )
271268, 147sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
272268, 63syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  .0.  e.  B )
273 simprr 796 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
f  Isom  <  ,  <  ( ( 1 ... ( # `
 W ) ) ,  W ) )
274 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  =/=  (/) )
275254ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  C_  ( 1 ... M ) )
27630ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( F  o.  H
) : ( 1 ... M ) --> B )
277276ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  x  e.  ( 1 ... M ) )  ->  ( ( F  o.  H ) `  x )  e.  B
)
27833a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( F  o.  H ) supp  .0.  )  C_  W )
279 ovexd 6680 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( 1 ... M
)  e.  _V )
28037a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  .0.  e.  _V )
281276, 278, 279, 280suppssr 7326 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  x  e.  ( (
1 ... M )  \  W ) )  -> 
( ( F  o.  H ) `  x
)  =  .0.  )
282 coass 5654 . . . . . . . . . . 11  |-  ( ( F  o.  H )  o.  f )  =  ( F  o.  ( H  o.  f )
)
283282fveq1i 6192 . . . . . . . . . 10  |-  ( ( ( F  o.  H
)  o.  f ) `
 y )  =  ( ( F  o.  ( H  o.  f
) ) `  y
)
284 isof1o 6573 . . . . . . . . . . . 12  |-  ( f 
Isom  <  ,  <  (
( 1 ... ( # `
 W ) ) ,  W )  -> 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
285 f1of 6137 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  f :
( 1 ... ( # `
 W ) ) --> W )
286273, 284, 2853syl 18 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
f : ( 1 ... ( # `  W
) ) --> W )
287 fvco3 6275 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  W
) ) --> W  /\  y  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( ( F  o.  H )  o.  f ) `  y
)  =  ( ( F  o.  H ) `
 ( f `  y ) ) )
288286, 287sylan 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  y  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( ( F  o.  H )  o.  f ) `  y
)  =  ( ( F  o.  H ) `
 ( f `  y ) ) )
289283, 288syl5eqr 2670 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  y  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  ( H  o.  f
) ) `  y
)  =  ( ( F  o.  H ) `
 ( f `  y ) ) )
290269, 270, 271, 272, 273, 274, 275, 277, 281, 289seqcoll2 13249 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  H ) ) `  M )  =  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) ) )
291267, 290eqtr4d 2659 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )
292291expr 643 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  -.  A  e.  ran  ... )  ->  ( f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
)  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
) ) )
293292exlimdv 1861 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  -.  A  e.  ran  ... )  ->  ( E. f  f 
Isom  <  ,  <  (
( 1 ... ( # `
 W ) ) ,  W )  -> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) ) )
294266, 293mpd 15 . . . 4  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  -.  A  e.  ran  ... )  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )
295294ex 450 . . 3  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( -.  A  e.  ran  ...  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) ) )
296249, 295pm2.61d 170 . 2  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
) )
29778, 296pm2.61dane 2881 1  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    Or wor 5034    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118   Rel wrel 5119    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   supp csupp 7295    ~~ cen 7952   Fincfn 7955   RRcr 9935   1c1 9937    < clt 10074   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cntz 17750
This theorem is referenced by:  gsumzres  18310  gsumzcl2  18311  gsumzf1o  18313  gsumzaddlem  18321  gsumconst  18334  gsumzmhm  18337  gsumzoppg  18344  gsumfsum  19813  wilthlem3  24796
  Copyright terms: Public domain W3C validator