MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgredg Structured version   Visualization version   Unicode version

Theorem iscplgredg 26313
Description: A graph is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
iscplgr.v  |-  V  =  (Vtx `  G )
iscplgredg.v  |-  E  =  (Edg `  G )
Assertion
Ref Expression
iscplgredg  |-  ( G  e.  W  ->  ( G  e. ComplGraph  <->  A. v  e.  V  A. n  e.  ( V  \  { v } ) E. e  e.  E  { v ,  n }  C_  e
) )
Distinct variable groups:    v, G    v, V    n, G, v   
n, V    v, W    e, E    e, G    e, V    e, W, n, v
Allowed substitution hints:    E( v, n)

Proof of Theorem iscplgredg
StepHypRef Expression
1 iscplgr.v . . 3  |-  V  =  (Vtx `  G )
21iscplgrnb 26312 . 2  |-  ( G  e.  W  ->  ( G  e. ComplGraph  <->  A. v  e.  V  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) ) )
3 df-3an 1039 . . . . . 6  |-  ( ( ( n  e.  V  /\  v  e.  V
)  /\  n  =/=  v  /\  E. e  e.  E  { v ,  n }  C_  e
)  <->  ( ( ( n  e.  V  /\  v  e.  V )  /\  n  =/=  v
)  /\  E. e  e.  E  { v ,  n }  C_  e
) )
43a1i 11 . . . . 5  |-  ( ( ( G  e.  W  /\  v  e.  V
)  /\  n  e.  ( V  \  { v } ) )  -> 
( ( ( n  e.  V  /\  v  e.  V )  /\  n  =/=  v  /\  E. e  e.  E  { v ,  n }  C_  e
)  <->  ( ( ( n  e.  V  /\  v  e.  V )  /\  n  =/=  v
)  /\  E. e  e.  E  { v ,  n }  C_  e
) ) )
5 iscplgredg.v . . . . . . 7  |-  E  =  (Edg `  G )
61, 5nbgrel 26238 . . . . . 6  |-  ( G  e.  W  ->  (
n  e.  ( G NeighbVtx  v )  <->  ( (
n  e.  V  /\  v  e.  V )  /\  n  =/=  v  /\  E. e  e.  E  { v ,  n }  C_  e ) ) )
76ad2antrr 762 . . . . 5  |-  ( ( ( G  e.  W  /\  v  e.  V
)  /\  n  e.  ( V  \  { v } ) )  -> 
( n  e.  ( G NeighbVtx  v )  <->  ( (
n  e.  V  /\  v  e.  V )  /\  n  =/=  v  /\  E. e  e.  E  { v ,  n }  C_  e ) ) )
8 eldifsn 4317 . . . . . . 7  |-  ( n  e.  ( V  \  { v } )  <-> 
( n  e.  V  /\  n  =/=  v
) )
9 simpr 477 . . . . . . . . 9  |-  ( ( G  e.  W  /\  v  e.  V )  ->  v  e.  V )
10 simpl 473 . . . . . . . . 9  |-  ( ( n  e.  V  /\  n  =/=  v )  ->  n  e.  V )
119, 10anim12ci 591 . . . . . . . 8  |-  ( ( ( G  e.  W  /\  v  e.  V
)  /\  ( n  e.  V  /\  n  =/=  v ) )  -> 
( n  e.  V  /\  v  e.  V
) )
12 simprr 796 . . . . . . . 8  |-  ( ( ( G  e.  W  /\  v  e.  V
)  /\  ( n  e.  V  /\  n  =/=  v ) )  ->  n  =/=  v )
1311, 12jca 554 . . . . . . 7  |-  ( ( ( G  e.  W  /\  v  e.  V
)  /\  ( n  e.  V  /\  n  =/=  v ) )  -> 
( ( n  e.  V  /\  v  e.  V )  /\  n  =/=  v ) )
148, 13sylan2b 492 . . . . . 6  |-  ( ( ( G  e.  W  /\  v  e.  V
)  /\  n  e.  ( V  \  { v } ) )  -> 
( ( n  e.  V  /\  v  e.  V )  /\  n  =/=  v ) )
1514biantrurd 529 . . . . 5  |-  ( ( ( G  e.  W  /\  v  e.  V
)  /\  n  e.  ( V  \  { v } ) )  -> 
( E. e  e.  E  { v ,  n }  C_  e  <->  ( ( ( n  e.  V  /\  v  e.  V )  /\  n  =/=  v )  /\  E. e  e.  E  {
v ,  n }  C_  e ) ) )
164, 7, 153bitr4d 300 . . . 4  |-  ( ( ( G  e.  W  /\  v  e.  V
)  /\  n  e.  ( V  \  { v } ) )  -> 
( n  e.  ( G NeighbVtx  v )  <->  E. e  e.  E  { v ,  n }  C_  e
) )
1716ralbidva 2985 . . 3  |-  ( ( G  e.  W  /\  v  e.  V )  ->  ( A. n  e.  ( V  \  {
v } ) n  e.  ( G NeighbVtx  v )  <->  A. n  e.  ( V  \  { v } ) E. e  e.  E  { v ,  n }  C_  e
) )
1817ralbidva 2985 . 2  |-  ( G  e.  W  ->  ( A. v  e.  V  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v )  <->  A. v  e.  V  A. n  e.  ( V  \  {
v } ) E. e  e.  E  {
v ,  n }  C_  e ) )
192, 18bitrd 268 1  |-  ( G  e.  W  ->  ( G  e. ComplGraph  <->  A. v  e.  V  A. n  e.  ( V  \  { v } ) E. e  e.  E  { v ,  n }  C_  e
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   NeighbVtx cnbgr 26224  ComplGraphccplgr 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-nbgr 26228  df-uvtxa 26230  df-cplgr 26231
This theorem is referenced by:  cplgrop  26333  cusconngr  27051
  Copyright terms: Public domain W3C validator