Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn Structured version   Visualization version   Unicode version

Theorem cvrnbtwn 34558
Description: There is no element between the two arguments of the covers relation. (cvnbtwn 29145 analog.) (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
cvrfval.b  |-  B  =  ( Base `  K
)
cvrfval.s  |-  .<  =  ( lt `  K )
cvrfval.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
cvrnbtwn  |-  ( ( K  e.  A  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  X C Y )  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) )

Proof of Theorem cvrnbtwn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . . . 5  |-  B  =  ( Base `  K
)
2 cvrfval.s . . . . 5  |-  .<  =  ( lt `  K )
3 cvrfval.c . . . . 5  |-  C  =  (  <o  `  K )
41, 2, 3cvrval 34556 . . . 4  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X  .<  Y  /\  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) ) ) )
543adant3r3 1276 . . 3  |-  ( ( K  e.  A  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Y  <->  ( X  .<  Y  /\  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) ) ) )
6 ralnex 2992 . . . . . . 7  |-  ( A. z  e.  B  -.  ( X  .<  z  /\  z  .<  Y )  <->  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) )
7 breq2 4657 . . . . . . . . . 10  |-  ( z  =  Z  ->  ( X  .<  z  <->  X  .<  Z ) )
8 breq1 4656 . . . . . . . . . 10  |-  ( z  =  Z  ->  (
z  .<  Y  <->  Z  .<  Y ) )
97, 8anbi12d 747 . . . . . . . . 9  |-  ( z  =  Z  ->  (
( X  .<  z  /\  z  .<  Y )  <-> 
( X  .<  Z  /\  Z  .<  Y ) ) )
109notbid 308 . . . . . . . 8  |-  ( z  =  Z  ->  ( -.  ( X  .<  z  /\  z  .<  Y )  <->  -.  ( X  .<  Z  /\  Z  .<  Y ) ) )
1110rspcv 3305 . . . . . . 7  |-  ( Z  e.  B  ->  ( A. z  e.  B  -.  ( X  .<  z  /\  z  .<  Y )  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) ) )
126, 11syl5bir 233 . . . . . 6  |-  ( Z  e.  B  ->  ( -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y )  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) ) )
1312adantld 483 . . . . 5  |-  ( Z  e.  B  ->  (
( X  .<  Y  /\  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) )  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) ) )
14133ad2ant3 1084 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( X  .<  Y  /\  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) )  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) ) )
1514adantl 482 . . 3  |-  ( ( K  e.  A  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<  Y  /\  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) )  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) ) )
165, 15sylbid 230 . 2  |-  ( ( K  e.  A  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Y  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) ) )
17163impia 1261 1  |-  ( ( K  e.  A  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  X C Y )  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888   Basecbs 15857   ltcplt 16941    <o ccvr 34549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-covers 34553
This theorem is referenced by:  cvrnbtwn2  34562  cvrnbtwn3  34563  cvrnbtwn4  34566  ltltncvr  34709
  Copyright terms: Public domain W3C validator