| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrnbtwn2 | Structured version Visualization version Unicode version | ||
| Description: The covers relation implies no in-betweenness. (cvnbtwn2 29146 analog.) (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| cvrletr.b |
|
| cvrletr.l |
|
| cvrletr.s |
|
| cvrletr.c |
|
| Ref | Expression |
|---|---|
| cvrnbtwn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrletr.b |
. . . . . 6
| |
| 2 | cvrletr.s |
. . . . . 6
| |
| 3 | cvrletr.c |
. . . . . 6
| |
| 4 | 1, 2, 3 | cvrnbtwn 34558 |
. . . . 5
|
| 5 | 4 | 3expia 1267 |
. . . 4
|
| 6 | iman 440 |
. . . . 5
| |
| 7 | simpl 473 |
. . . . . . . . . 10
| |
| 8 | simpr3 1069 |
. . . . . . . . . 10
| |
| 9 | simpr2 1068 |
. . . . . . . . . 10
| |
| 10 | cvrletr.l |
. . . . . . . . . . 11
| |
| 11 | 10, 2 | pltval 16960 |
. . . . . . . . . 10
|
| 12 | 7, 8, 9, 11 | syl3anc 1326 |
. . . . . . . . 9
|
| 13 | df-ne 2795 |
. . . . . . . . . 10
| |
| 14 | 13 | anbi2i 730 |
. . . . . . . . 9
|
| 15 | 12, 14 | syl6bb 276 |
. . . . . . . 8
|
| 16 | 15 | anbi2d 740 |
. . . . . . 7
|
| 17 | anass 681 |
. . . . . . 7
| |
| 18 | 16, 17 | syl6rbbr 279 |
. . . . . 6
|
| 19 | 18 | notbid 308 |
. . . . 5
|
| 20 | 6, 19 | syl5rbb 273 |
. . . 4
|
| 21 | 5, 20 | sylibd 229 |
. . 3
|
| 22 | 21 | 3impia 1261 |
. 2
|
| 23 | 1, 2, 3 | cvrlt 34557 |
. . . . . . 7
|
| 24 | 23 | ex 450 |
. . . . . 6
|
| 25 | 24 | 3adant3r3 1276 |
. . . . 5
|
| 26 | 25 | 3impia 1261 |
. . . 4
|
| 27 | breq2 4657 |
. . . 4
| |
| 28 | 26, 27 | syl5ibrcom 237 |
. . 3
|
| 29 | 1, 10 | posref 16951 |
. . . . . 6
|
| 30 | 29 | 3ad2antr2 1227 |
. . . . 5
|
| 31 | breq1 4656 |
. . . . 5
| |
| 32 | 30, 31 | syl5ibrcom 237 |
. . . 4
|
| 33 | 32 | 3adant3 1081 |
. . 3
|
| 34 | 28, 33 | jcad 555 |
. 2
|
| 35 | 22, 34 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-preset 16928 df-poset 16946 df-plt 16958 df-covers 34553 |
| This theorem is referenced by: cvrval3 34699 cvrexchlem 34705 |
| Copyright terms: Public domain | W3C validator |