Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn3 Structured version   Visualization version   Unicode version

Theorem cvrnbtwn3 34563
Description: The covers relation implies no in-betweenness. (cvnbtwn3 29147 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b  |-  B  =  ( Base `  K
)
cvrletr.l  |-  .<_  =  ( le `  K )
cvrletr.s  |-  .<  =  ( lt `  K )
cvrletr.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
cvrnbtwn3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<_  Z  /\  Z  .<  Y )  <->  X  =  Z
) )

Proof of Theorem cvrnbtwn3
StepHypRef Expression
1 cvrletr.b . . . 4  |-  B  =  ( Base `  K
)
2 cvrletr.s . . . 4  |-  .<  =  ( lt `  K )
3 cvrletr.c . . . 4  |-  C  =  (  <o  `  K )
41, 2, 3cvrnbtwn 34558 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) )
5 cvrletr.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
65, 2pltval 16960 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .<  Z  <->  ( X  .<_  Z  /\  X  =/= 
Z ) ) )
763adant3r2 1275 . . . . . . 7  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<  Z  <->  ( X  .<_  Z  /\  X  =/=  Z
) ) )
873adant3 1081 . . . . . 6  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( X  .<  Z  <-> 
( X  .<_  Z  /\  X  =/=  Z ) ) )
98anbi1d 741 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<  Z  /\  Z  .<  Y )  <->  ( ( X 
.<_  Z  /\  X  =/= 
Z )  /\  Z  .<  Y ) ) )
109notbid 308 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( -.  ( X  .<  Z  /\  Z  .<  Y )  <->  -.  (
( X  .<_  Z  /\  X  =/=  Z )  /\  Z  .<  Y ) ) )
11 an32 839 . . . . . . 7  |-  ( ( ( X  .<_  Z  /\  X  =/=  Z )  /\  Z  .<  Y )  <->  ( ( X  .<_  Z  /\  Z  .<  Y )  /\  X  =/=  Z ) )
12 df-ne 2795 . . . . . . . 8  |-  ( X  =/=  Z  <->  -.  X  =  Z )
1312anbi2i 730 . . . . . . 7  |-  ( ( ( X  .<_  Z  /\  Z  .<  Y )  /\  X  =/=  Z )  <->  ( ( X  .<_  Z  /\  Z  .<  Y )  /\  -.  X  =  Z )
)
1411, 13bitri 264 . . . . . 6  |-  ( ( ( X  .<_  Z  /\  X  =/=  Z )  /\  Z  .<  Y )  <->  ( ( X  .<_  Z  /\  Z  .<  Y )  /\  -.  X  =  Z )
)
1514notbii 310 . . . . 5  |-  ( -.  ( ( X  .<_  Z  /\  X  =/=  Z
)  /\  Z  .<  Y )  <->  -.  ( ( X  .<_  Z  /\  Z  .<  Y )  /\  -.  X  =  Z )
)
16 iman 440 . . . . 5  |-  ( ( ( X  .<_  Z  /\  Z  .<  Y )  ->  X  =  Z )  <->  -.  ( ( X  .<_  Z  /\  Z  .<  Y )  /\  -.  X  =  Z ) )
1715, 16bitr4i 267 . . . 4  |-  ( -.  ( ( X  .<_  Z  /\  X  =/=  Z
)  /\  Z  .<  Y )  <->  ( ( X 
.<_  Z  /\  Z  .<  Y )  ->  X  =  Z ) )
1810, 17syl6bb 276 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( -.  ( X  .<  Z  /\  Z  .<  Y )  <->  ( ( X  .<_  Z  /\  Z  .<  Y )  ->  X  =  Z ) ) )
194, 18mpbid 222 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<_  Z  /\  Z  .<  Y )  ->  X  =  Z ) )
201, 5posref 16951 . . . . . 6  |-  ( ( K  e.  Poset  /\  X  e.  B )  ->  X  .<_  X )
21 breq2 4657 . . . . . 6  |-  ( X  =  Z  ->  ( X  .<_  X  <->  X  .<_  Z ) )
2220, 21syl5ibcom 235 . . . . 5  |-  ( ( K  e.  Poset  /\  X  e.  B )  ->  ( X  =  Z  ->  X 
.<_  Z ) )
23223ad2antr1 1226 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  =  Z  ->  X  .<_  Z ) )
24233adant3 1081 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( X  =  Z  ->  X  .<_  Z ) )
25 simp1 1061 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  K  e.  Poset )
26 simp21 1094 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  X  e.  B
)
27 simp22 1095 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  Y  e.  B
)
28 simp3 1063 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  X C Y )
291, 2, 3cvrlt 34557 . . . . 5  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  X  .<  Y )
3025, 26, 27, 28, 29syl31anc 1329 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  X  .<  Y )
31 breq1 4656 . . . 4  |-  ( X  =  Z  ->  ( X  .<  Y  <->  Z  .<  Y ) )
3230, 31syl5ibcom 235 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( X  =  Z  ->  Z  .<  Y ) )
3324, 32jcad 555 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( X  =  Z  ->  ( X  .<_  Z  /\  Z  .<  Y ) ) )
3419, 33impbid 202 1  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<_  Z  /\  Z  .<  Y )  <->  X  =  Z
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   Posetcpo 16940   ltcplt 16941    <o ccvr 34549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-preset 16928  df-poset 16946  df-plt 16958  df-covers 34553
This theorem is referenced by:  atcvreq0  34601  cvratlem  34707
  Copyright terms: Public domain W3C validator