Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalaw Structured version   Visualization version   Unicode version

Theorem dalaw 35172
Description: Desargues' law, derived from Desargues' theorem dath 35022 and with no conditions on the atoms. If triples  <. P ,  Q ,  R >. and  <. S ,  T ,  U >. are centrally perspective, i.e.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.)
Hypotheses
Ref Expression
dalaw.l  |-  .<_  =  ( le `  K )
dalaw.j  |-  .\/  =  ( join `  K )
dalaw.m  |-  ./\  =  ( meet `  K )
dalaw.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dalaw  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )

Proof of Theorem dalaw
StepHypRef Expression
1 dalaw.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
2 dalaw.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
3 dalaw.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
4 dalaw.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
5 eqid 2622 . . . . . . . . 9  |-  ( LPlanes `  K )  =  (
LPlanes `  K )
61, 2, 3, 4, 5dalawlem14 35170 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
763expib 1268 . . . . . . 7  |-  ( ( K  e.  HL  /\  -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
873exp 1264 . . . . . 6  |-  ( K  e.  HL  ->  ( -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
91, 2, 3, 4, 5dalawlem15 35171 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( ( S  .\/  T ) 
.\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
1093expib 1268 . . . . . . 7  |-  ( ( K  e.  HL  /\  -.  ( ( ( S 
.\/  T )  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
11103exp 1264 . . . . . 6  |-  ( K  e.  HL  ->  ( -.  ( ( ( S 
.\/  T )  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
12 simp11 1091 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  K  e.  HL )
13 simp2 1062 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )
14 simp3 1063 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )
15 simp2ll 1128 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  e.  ( LPlanes `  K ) )
16153ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  .\/  R )  e.  ( LPlanes `  K ) )
17 simp2rl 1130 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K ) )
18173ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K ) )
19 simp2lr 1129 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )
20193ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )
21 simp2rr 1131 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )
22213ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )
23 simp13 1093 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )
241, 2, 3, 4, 5dalawlem1 35157 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  ( LPlanes `  K )  /\  (
( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )
)  /\  ( ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
2512, 13, 14, 16, 18, 20, 22, 23, 24syl323anc 1356 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
26253expib 1268 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
27263exp 1264 . . . . . 6  |-  ( K  e.  HL  ->  (
( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
288, 11, 27ecased 985 . . . . 5  |-  ( K  e.  HL  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) )
2928exp4a 633 . . . 4  |-  ( K  e.  HL  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  ->  (
( S  e.  A  /\  T  e.  A  /\  U  e.  A
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) ) )
3029com34 91 . . 3  |-  ( K  e.  HL  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  ->  (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) ) )
3130com24 95 . 2  |-  ( K  e.  HL  ->  (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  ->  ( ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  ->  ( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
32313imp 1256 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   HLchlt 34637   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-psubsp 34789  df-pmap 34790  df-padd 35082
This theorem is referenced by:  cdleme14  35560  cdleme20f  35602  cdlemg9  35922  cdlemg12c  35933  cdlemk6  36125  cdlemk6u  36150
  Copyright terms: Public domain W3C validator