| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac5lem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for dfac5 8951. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| dfac5lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3796 |
. . . 4
| |
| 2 | elxp 5131 |
. . . . . 6
| |
| 3 | excom 2042 |
. . . . . 6
| |
| 4 | 2, 3 | bitri 264 |
. . . . 5
|
| 5 | 4 | anbi1i 731 |
. . . 4
|
| 6 | 19.41vv 1915 |
. . . . 5
| |
| 7 | an32 839 |
. . . . . . . . 9
| |
| 8 | eleq1 2689 |
. . . . . . . . . . 11
| |
| 9 | 8 | pm5.32i 669 |
. . . . . . . . . 10
|
| 10 | velsn 4193 |
. . . . . . . . . . 11
| |
| 11 | 10 | anbi1i 731 |
. . . . . . . . . 10
|
| 12 | 9, 11 | anbi12i 733 |
. . . . . . . . 9
|
| 13 | an4 865 |
. . . . . . . . . 10
| |
| 14 | ancom 466 |
. . . . . . . . . . 11
| |
| 15 | ancom 466 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | anbi12i 733 |
. . . . . . . . . 10
|
| 17 | anass 681 |
. . . . . . . . . 10
| |
| 18 | 13, 16, 17 | 3bitri 286 |
. . . . . . . . 9
|
| 19 | 7, 12, 18 | 3bitri 286 |
. . . . . . . 8
|
| 20 | 19 | exbii 1774 |
. . . . . . 7
|
| 21 | vex 3203 |
. . . . . . . 8
| |
| 22 | opeq1 4402 |
. . . . . . . . . 10
| |
| 23 | 22 | eqeq2d 2632 |
. . . . . . . . 9
|
| 24 | 22 | eleq1d 2686 |
. . . . . . . . . 10
|
| 25 | 24 | anbi2d 740 |
. . . . . . . . 9
|
| 26 | 23, 25 | anbi12d 747 |
. . . . . . . 8
|
| 27 | 21, 26 | ceqsexv 3242 |
. . . . . . 7
|
| 28 | 20, 27 | bitri 264 |
. . . . . 6
|
| 29 | 28 | exbii 1774 |
. . . . 5
|
| 30 | 6, 29 | bitr3i 266 |
. . . 4
|
| 31 | 1, 5, 30 | 3bitri 286 |
. . 3
|
| 32 | 31 | eubii 2492 |
. 2
|
| 33 | 21 | euop2 4974 |
. 2
|
| 34 | 32, 33 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: dfac5lem5 8950 |
| Copyright terms: Public domain | W3C validator |