| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac4 | Structured version Visualization version Unicode version | ||
| Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| dfac4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac3 8944 |
. 2
| |
| 2 | fveq1 6190 |
. . . . . . . . 9
| |
| 3 | 2 | eleq1d 2686 |
. . . . . . . 8
|
| 4 | 3 | imbi2d 330 |
. . . . . . 7
|
| 5 | 4 | ralbidv 2986 |
. . . . . 6
|
| 6 | 5 | cbvexv 2275 |
. . . . 5
|
| 7 | fvex 6201 |
. . . . . . . . 9
| |
| 8 | eqid 2622 |
. . . . . . . . 9
| |
| 9 | 7, 8 | fnmpti 6022 |
. . . . . . . 8
|
| 10 | fveq2 6191 |
. . . . . . . . . . . . 13
| |
| 11 | fvex 6201 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 8, 11 | fvmpt 6282 |
. . . . . . . . . . . 12
|
| 13 | 12 | eleq1d 2686 |
. . . . . . . . . . 11
|
| 14 | 13 | imbi2d 330 |
. . . . . . . . . 10
|
| 15 | 14 | ralbiia 2979 |
. . . . . . . . 9
|
| 16 | 15 | anbi2i 730 |
. . . . . . . 8
|
| 17 | 9, 16 | mpbiran 953 |
. . . . . . 7
|
| 18 | fvrn0 6216 |
. . . . . . . . . . 11
| |
| 19 | 18 | rgenw 2924 |
. . . . . . . . . 10
|
| 20 | 8 | fmpt 6381 |
. . . . . . . . . 10
|
| 21 | 19, 20 | mpbi 220 |
. . . . . . . . 9
|
| 22 | vex 3203 |
. . . . . . . . 9
| |
| 23 | vex 3203 |
. . . . . . . . . . 11
| |
| 24 | 23 | rnex 7100 |
. . . . . . . . . 10
|
| 25 | p0ex 4853 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | unex 6956 |
. . . . . . . . 9
|
| 27 | fex2 7121 |
. . . . . . . . 9
| |
| 28 | 21, 22, 26, 27 | mp3an 1424 |
. . . . . . . 8
|
| 29 | fneq1 5979 |
. . . . . . . . 9
| |
| 30 | fveq1 6190 |
. . . . . . . . . . . 12
| |
| 31 | 30 | eleq1d 2686 |
. . . . . . . . . . 11
|
| 32 | 31 | imbi2d 330 |
. . . . . . . . . 10
|
| 33 | 32 | ralbidv 2986 |
. . . . . . . . 9
|
| 34 | 29, 33 | anbi12d 747 |
. . . . . . . 8
|
| 35 | 28, 34 | spcev 3300 |
. . . . . . 7
|
| 36 | 17, 35 | sylbir 225 |
. . . . . 6
|
| 37 | 36 | exlimiv 1858 |
. . . . 5
|
| 38 | 6, 37 | sylbi 207 |
. . . 4
|
| 39 | exsimpr 1796 |
. . . 4
| |
| 40 | 38, 39 | impbii 199 |
. . 3
|
| 41 | 40 | albii 1747 |
. 2
|
| 42 | 1, 41 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ac 8939 |
| This theorem is referenced by: dfac5 8951 dfacacn 8963 ac5 9299 |
| Copyright terms: Public domain | W3C validator |