| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac5lem5 | Structured version Visualization version Unicode version | ||
| Description: Lemma for dfac5 8951. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| dfac5lem.1 |
|
| dfac5lem.2 |
|
| dfac5lem.3 |
|
| Ref | Expression |
|---|---|
| dfac5lem5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac5lem.1 |
. . 3
| |
| 2 | dfac5lem.2 |
. . 3
| |
| 3 | dfac5lem.3 |
. . 3
| |
| 4 | 1, 2, 3 | dfac5lem4 8949 |
. 2
|
| 5 | simpr 477 |
. . . . . . . . . 10
| |
| 6 | 5 | a1i 11 |
. . . . . . . . 9
|
| 7 | ineq1 3807 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | eleq2d 2687 |
. . . . . . . . . . . 12
|
| 9 | 8 | eubidv 2490 |
. . . . . . . . . . 11
|
| 10 | 9 | rspccv 3306 |
. . . . . . . . . 10
|
| 11 | 1 | dfac5lem3 8948 |
. . . . . . . . . 10
|
| 12 | dfac5lem1 8946 |
. . . . . . . . . 10
| |
| 13 | 10, 11, 12 | 3imtr3g 284 |
. . . . . . . . 9
|
| 14 | 6, 13 | jcad 555 |
. . . . . . . 8
|
| 15 | 2 | eleq2i 2693 |
. . . . . . . . . . 11
|
| 16 | elin 3796 |
. . . . . . . . . . 11
| |
| 17 | 1 | dfac5lem2 8947 |
. . . . . . . . . . . . 13
|
| 18 | 17 | anbi1i 731 |
. . . . . . . . . . . 12
|
| 19 | anass 681 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | bitri 264 |
. . . . . . . . . . 11
|
| 21 | 15, 16, 20 | 3bitri 286 |
. . . . . . . . . 10
|
| 22 | 21 | eubii 2492 |
. . . . . . . . 9
|
| 23 | euanv 2534 |
. . . . . . . . 9
| |
| 24 | 22, 23 | bitr2i 265 |
. . . . . . . 8
|
| 25 | 14, 24 | syl6ib 241 |
. . . . . . 7
|
| 26 | euex 2494 |
. . . . . . . 8
| |
| 27 | nfeu1 2480 |
. . . . . . . . . 10
| |
| 28 | nfv 1843 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | nfim 1825 |
. . . . . . . . 9
|
| 30 | 21 | simprbi 480 |
. . . . . . . . . . 11
|
| 31 | 30 | simpld 475 |
. . . . . . . . . 10
|
| 32 | tz6.12 6211 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | eleq1d 2686 |
. . . . . . . . . . . 12
|
| 34 | 33 | biimparc 504 |
. . . . . . . . . . 11
|
| 35 | 34 | exp32 631 |
. . . . . . . . . 10
|
| 36 | 31, 35 | mpcom 38 |
. . . . . . . . 9
|
| 37 | 29, 36 | exlimi 2086 |
. . . . . . . 8
|
| 38 | 26, 37 | mpcom 38 |
. . . . . . 7
|
| 39 | 25, 38 | syl6 35 |
. . . . . 6
|
| 40 | 39 | expcomd 454 |
. . . . 5
|
| 41 | 40 | ralrimiv 2965 |
. . . 4
|
| 42 | vex 3203 |
. . . . . . 7
| |
| 43 | 42 | inex2 4800 |
. . . . . 6
|
| 44 | 2, 43 | eqeltri 2697 |
. . . . 5
|
| 45 | fveq1 6190 |
. . . . . . . 8
| |
| 46 | 45 | eleq1d 2686 |
. . . . . . 7
|
| 47 | 46 | imbi2d 330 |
. . . . . 6
|
| 48 | 47 | ralbidv 2986 |
. . . . 5
|
| 49 | 44, 48 | spcev 3300 |
. . . 4
|
| 50 | 41, 49 | syl 17 |
. . 3
|
| 51 | 50 | exlimiv 1858 |
. 2
|
| 52 | 4, 51 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: dfac5 8951 |
| Copyright terms: Public domain | W3C validator |