MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem2 Structured version   Visualization version   Unicode version

Theorem dfac5lem2 8947
Description: Lemma for dfac5 8951. (Contributed by NM, 12-Apr-2004.)
Hypothesis
Ref Expression
dfac5lem.1  |-  A  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
Assertion
Ref Expression
dfac5lem2  |-  ( <.
w ,  g >.  e.  U. A  <->  ( w  e.  h  /\  g  e.  w ) )
Distinct variable groups:    w, u, t, h, g    w, A, g
Allowed substitution hints:    A( u, t, h)

Proof of Theorem dfac5lem2
StepHypRef Expression
1 dfac5lem.1 . . . 4  |-  A  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
21unieqi 4445 . . 3  |-  U. A  =  U. { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
32eleq2i 2693 . 2  |-  ( <.
w ,  g >.  e.  U. A  <->  <. w ,  g >.  e.  U. {
u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) } )
4 eluniab 4447 . . 3  |-  ( <.
w ,  g >.  e.  U. { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }  <->  E. u
( <. w ,  g
>.  e.  u  /\  (
u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) ) )
5 r19.42v 3092 . . . . 5  |-  ( E. t  e.  h  ( ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) )
6 anass 681 . . . . 5  |-  ( ( ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) )  /\  E. t  e.  h  u  =  ( { t }  X.  t ) )  <->  ( <. w ,  g >.  e.  u  /\  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) ) )
75, 6bitr2i 265 . . . 4  |-  ( (
<. w ,  g >.  e.  u  /\  (
u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) )  <->  E. t  e.  h  ( ( <. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) )
87exbii 1774 . . 3  |-  ( E. u ( <. w ,  g >.  e.  u  /\  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) )  <->  E. u E. t  e.  h  ( ( <. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( {
t }  X.  t
) ) )
9 rexcom4 3225 . . . 4  |-  ( E. t  e.  h  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  E. u E. t  e.  h  ( ( <. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) )
10 df-rex 2918 . . . 4  |-  ( E. t  e.  h  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  E. t ( t  e.  h  /\  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) ) )
119, 10bitr3i 266 . . 3  |-  ( E. u E. t  e.  h  ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  E. t ( t  e.  h  /\  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) ) )
124, 8, 113bitri 286 . 2  |-  ( <.
w ,  g >.  e.  U. { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }  <->  E. t
( t  e.  h  /\  E. u ( (
<. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) ) )
13 ancom 466 . . . . . . . . 9  |-  ( ( ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  ( u  =  ( { t }  X.  t )  /\  ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) ) ) )
14 ne0i 3921 . . . . . . . . . . 11  |-  ( <.
w ,  g >.  e.  u  ->  u  =/=  (/) )
1514pm4.71i 664 . . . . . . . . . 10  |-  ( <.
w ,  g >.  e.  u  <->  ( <. w ,  g >.  e.  u  /\  u  =/=  (/) ) )
1615anbi2i 730 . . . . . . . . 9  |-  ( ( u  =  ( { t }  X.  t
)  /\  <. w ,  g >.  e.  u
)  <->  ( u  =  ( { t }  X.  t )  /\  ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) ) ) )
1713, 16bitr4i 267 . . . . . . . 8  |-  ( ( ( <. w ,  g
>.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  ( u  =  ( { t }  X.  t )  /\  <.
w ,  g >.  e.  u ) )
1817exbii 1774 . . . . . . 7  |-  ( E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  E. u ( u  =  ( { t }  X.  t )  /\  <. w ,  g
>.  e.  u ) )
19 snex 4908 . . . . . . . . 9  |-  { t }  e.  _V
20 vex 3203 . . . . . . . . 9  |-  t  e. 
_V
2119, 20xpex 6962 . . . . . . . 8  |-  ( { t }  X.  t
)  e.  _V
22 eleq2 2690 . . . . . . . 8  |-  ( u  =  ( { t }  X.  t )  ->  ( <. w ,  g >.  e.  u  <->  <.
w ,  g >.  e.  ( { t }  X.  t ) ) )
2321, 22ceqsexv 3242 . . . . . . 7  |-  ( E. u ( u  =  ( { t }  X.  t )  /\  <.
w ,  g >.  e.  u )  <->  <. w ,  g >.  e.  ( { t }  X.  t ) )
2418, 23bitri 264 . . . . . 6  |-  ( E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) )  <->  <. w ,  g
>.  e.  ( { t }  X.  t ) )
2524anbi2i 730 . . . . 5  |-  ( ( t  e.  h  /\  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) )  <->  ( t  e.  h  /\  <. w ,  g >.  e.  ( { t }  X.  t ) ) )
26 opelxp 5146 . . . . . . 7  |-  ( <.
w ,  g >.  e.  ( { t }  X.  t )  <->  ( w  e.  { t }  /\  g  e.  t )
)
27 velsn 4193 . . . . . . . . 9  |-  ( w  e.  { t }  <-> 
w  =  t )
28 equcom 1945 . . . . . . . . 9  |-  ( w  =  t  <->  t  =  w )
2927, 28bitri 264 . . . . . . . 8  |-  ( w  e.  { t }  <-> 
t  =  w )
3029anbi1i 731 . . . . . . 7  |-  ( ( w  e.  { t }  /\  g  e.  t )  <->  ( t  =  w  /\  g  e.  t ) )
3126, 30bitri 264 . . . . . 6  |-  ( <.
w ,  g >.  e.  ( { t }  X.  t )  <->  ( t  =  w  /\  g  e.  t ) )
3231anbi2i 730 . . . . 5  |-  ( ( t  e.  h  /\  <.
w ,  g >.  e.  ( { t }  X.  t ) )  <-> 
( t  e.  h  /\  ( t  =  w  /\  g  e.  t ) ) )
33 an12 838 . . . . 5  |-  ( ( t  e.  h  /\  ( t  =  w  /\  g  e.  t ) )  <->  ( t  =  w  /\  (
t  e.  h  /\  g  e.  t )
) )
3425, 32, 333bitri 286 . . . 4  |-  ( ( t  e.  h  /\  E. u ( ( <.
w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( { t }  X.  t ) ) )  <->  ( t  =  w  /\  (
t  e.  h  /\  g  e.  t )
) )
3534exbii 1774 . . 3  |-  ( E. t ( t  e.  h  /\  E. u
( ( <. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( {
t }  X.  t
) ) )  <->  E. t
( t  =  w  /\  ( t  e.  h  /\  g  e.  t ) ) )
36 vex 3203 . . . 4  |-  w  e. 
_V
37 elequ1 1997 . . . . 5  |-  ( t  =  w  ->  (
t  e.  h  <->  w  e.  h ) )
38 eleq2 2690 . . . . 5  |-  ( t  =  w  ->  (
g  e.  t  <->  g  e.  w ) )
3937, 38anbi12d 747 . . . 4  |-  ( t  =  w  ->  (
( t  e.  h  /\  g  e.  t
)  <->  ( w  e.  h  /\  g  e.  w ) ) )
4036, 39ceqsexv 3242 . . 3  |-  ( E. t ( t  =  w  /\  ( t  e.  h  /\  g  e.  t ) )  <->  ( w  e.  h  /\  g  e.  w ) )
4135, 40bitri 264 . 2  |-  ( E. t ( t  e.  h  /\  E. u
( ( <. w ,  g >.  e.  u  /\  u  =/=  (/) )  /\  u  =  ( {
t }  X.  t
) ) )  <->  ( w  e.  h  /\  g  e.  w ) )
423, 12, 413bitri 286 1  |-  ( <.
w ,  g >.  e.  U. A  <->  ( w  e.  h  /\  g  e.  w ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   (/)c0 3915   {csn 4177   <.cop 4183   U.cuni 4436    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  dfac5lem5  8950
  Copyright terms: Public domain W3C validator