| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac5lem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for dfac5 8951. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| dfac5lem.1 |
|
| Ref | Expression |
|---|---|
| dfac5lem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac5lem.1 |
. . . 4
| |
| 2 | 1 | unieqi 4445 |
. . 3
|
| 3 | 2 | eleq2i 2693 |
. 2
|
| 4 | eluniab 4447 |
. . 3
| |
| 5 | r19.42v 3092 |
. . . . 5
| |
| 6 | anass 681 |
. . . . 5
| |
| 7 | 5, 6 | bitr2i 265 |
. . . 4
|
| 8 | 7 | exbii 1774 |
. . 3
|
| 9 | rexcom4 3225 |
. . . 4
| |
| 10 | df-rex 2918 |
. . . 4
| |
| 11 | 9, 10 | bitr3i 266 |
. . 3
|
| 12 | 4, 8, 11 | 3bitri 286 |
. 2
|
| 13 | ancom 466 |
. . . . . . . . 9
| |
| 14 | ne0i 3921 |
. . . . . . . . . . 11
| |
| 15 | 14 | pm4.71i 664 |
. . . . . . . . . 10
|
| 16 | 15 | anbi2i 730 |
. . . . . . . . 9
|
| 17 | 13, 16 | bitr4i 267 |
. . . . . . . 8
|
| 18 | 17 | exbii 1774 |
. . . . . . 7
|
| 19 | snex 4908 |
. . . . . . . . 9
| |
| 20 | vex 3203 |
. . . . . . . . 9
| |
| 21 | 19, 20 | xpex 6962 |
. . . . . . . 8
|
| 22 | eleq2 2690 |
. . . . . . . 8
| |
| 23 | 21, 22 | ceqsexv 3242 |
. . . . . . 7
|
| 24 | 18, 23 | bitri 264 |
. . . . . 6
|
| 25 | 24 | anbi2i 730 |
. . . . 5
|
| 26 | opelxp 5146 |
. . . . . . 7
| |
| 27 | velsn 4193 |
. . . . . . . . 9
| |
| 28 | equcom 1945 |
. . . . . . . . 9
| |
| 29 | 27, 28 | bitri 264 |
. . . . . . . 8
|
| 30 | 29 | anbi1i 731 |
. . . . . . 7
|
| 31 | 26, 30 | bitri 264 |
. . . . . 6
|
| 32 | 31 | anbi2i 730 |
. . . . 5
|
| 33 | an12 838 |
. . . . 5
| |
| 34 | 25, 32, 33 | 3bitri 286 |
. . . 4
|
| 35 | 34 | exbii 1774 |
. . 3
|
| 36 | vex 3203 |
. . . 4
| |
| 37 | elequ1 1997 |
. . . . 5
| |
| 38 | eleq2 2690 |
. . . . 5
| |
| 39 | 37, 38 | anbi12d 747 |
. . . 4
|
| 40 | 36, 39 | ceqsexv 3242 |
. . 3
|
| 41 | 35, 40 | bitri 264 |
. 2
|
| 42 | 3, 12, 41 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: dfac5lem5 8950 |
| Copyright terms: Public domain | W3C validator |