Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval3 Structured version   Visualization version   Unicode version

Theorem dicelval3 36469
Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dicval.l  |-  .<_  =  ( le `  K )
dicval.a  |-  A  =  ( Atoms `  K )
dicval.h  |-  H  =  ( LHyp `  K
)
dicval.p  |-  P  =  ( ( oc `  K ) `  W
)
dicval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicval.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicval.i  |-  I  =  ( ( DIsoC `  K
) `  W )
dicval2.g  |-  G  =  ( iota_ g  e.  T  ( g `  P
)  =  Q )
Assertion
Ref Expression
dicelval3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <->  E. s  e.  E  Y  =  <. ( s `
 G ) ,  s >. ) )
Distinct variable groups:    g, s, K    T, g    g, W, s    E, s    Q, g, s    Y, s
Allowed substitution hints:    A( g, s)    P( g, s)    T( s)    E( g)    G( g, s)    H( g, s)    I( g, s)    .<_ ( g, s)    V( g, s)    Y( g)

Proof of Theorem dicelval3
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4  |-  .<_  =  ( le `  K )
2 dicval.a . . . 4  |-  A  =  ( Atoms `  K )
3 dicval.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dicval.p . . . 4  |-  P  =  ( ( oc `  K ) `  W
)
5 dicval.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
6 dicval.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
7 dicval.i . . . 4  |-  I  =  ( ( DIsoC `  K
) `  W )
8 dicval2.g . . . 4  |-  G  =  ( iota_ g  e.  T  ( g `  P
)  =  Q )
91, 2, 3, 4, 5, 6, 7, 8dicval2 36468 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 G )  /\  s  e.  E ) } )
109eleq2d 2687 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <-> 
Y  e.  { <. f ,  s >.  |  ( f  =  ( s `
 G )  /\  s  e.  E ) } ) )
11 excom 2042 . . . 4  |-  ( E. f E. s ( Y  =  <. f ,  s >.  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  <->  E. s E. f
( Y  =  <. f ,  s >.  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )
12 an12 838 . . . . . . 7  |-  ( ( Y  =  <. f ,  s >.  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  <->  ( f  =  ( s `  G
)  /\  ( Y  =  <. f ,  s
>.  /\  s  e.  E
) ) )
1312exbii 1774 . . . . . 6  |-  ( E. f ( Y  = 
<. f ,  s >.  /\  ( f  =  ( s `  G )  /\  s  e.  E
) )  <->  E. f
( f  =  ( s `  G )  /\  ( Y  = 
<. f ,  s >.  /\  s  e.  E
) ) )
14 fvex 6201 . . . . . . 7  |-  ( s `
 G )  e. 
_V
15 opeq1 4402 . . . . . . . . 9  |-  ( f  =  ( s `  G )  ->  <. f ,  s >.  =  <. ( s `  G ) ,  s >. )
1615eqeq2d 2632 . . . . . . . 8  |-  ( f  =  ( s `  G )  ->  ( Y  =  <. f ,  s >.  <->  Y  =  <. ( s `  G ) ,  s >. )
)
1716anbi1d 741 . . . . . . 7  |-  ( f  =  ( s `  G )  ->  (
( Y  =  <. f ,  s >.  /\  s  e.  E )  <->  ( Y  =  <. ( s `  G ) ,  s
>.  /\  s  e.  E
) ) )
1814, 17ceqsexv 3242 . . . . . 6  |-  ( E. f ( f  =  ( s `  G
)  /\  ( Y  =  <. f ,  s
>.  /\  s  e.  E
) )  <->  ( Y  =  <. ( s `  G ) ,  s
>.  /\  s  e.  E
) )
19 ancom 466 . . . . . 6  |-  ( ( Y  =  <. (
s `  G ) ,  s >.  /\  s  e.  E )  <->  ( s  e.  E  /\  Y  = 
<. ( s `  G
) ,  s >.
) )
2013, 18, 193bitri 286 . . . . 5  |-  ( E. f ( Y  = 
<. f ,  s >.  /\  ( f  =  ( s `  G )  /\  s  e.  E
) )  <->  ( s  e.  E  /\  Y  = 
<. ( s `  G
) ,  s >.
) )
2120exbii 1774 . . . 4  |-  ( E. s E. f ( Y  =  <. f ,  s >.  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  <->  E. s ( s  e.  E  /\  Y  =  <. ( s `  G ) ,  s
>. ) )
2211, 21bitri 264 . . 3  |-  ( E. f E. s ( Y  =  <. f ,  s >.  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  <->  E. s ( s  e.  E  /\  Y  =  <. ( s `  G ) ,  s
>. ) )
23 elopab 4983 . . 3  |-  ( Y  e.  { <. f ,  s >.  |  ( f  =  ( s `
 G )  /\  s  e.  E ) } 
<->  E. f E. s
( Y  =  <. f ,  s >.  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )
24 df-rex 2918 . . 3  |-  ( E. s  e.  E  Y  =  <. ( s `  G ) ,  s
>. 
<->  E. s ( s  e.  E  /\  Y  =  <. ( s `  G ) ,  s
>. ) )
2522, 23, 243bitr4i 292 . 2  |-  ( Y  e.  { <. f ,  s >.  |  ( f  =  ( s `
 G )  /\  s  e.  E ) } 
<->  E. s  e.  E  Y  =  <. ( s `
 G ) ,  s >. )
2610, 25syl6bb 276 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Y  e.  ( I `  Q )  <->  E. s  e.  E  Y  =  <. ( s `
 G ) ,  s >. ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   <.cop 4183   class class class wbr 4653   {copab 4712   ` cfv 5888   iota_crio 6610   lecple 15948   occoc 15949   Atomscatm 34550   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   DIsoCcdic 36461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-dic 36462
This theorem is referenced by:  cdlemn11pre  36499  dihord2pre  36514
  Copyright terms: Public domain W3C validator