Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicopelval Structured version   Visualization version   Unicode version

Theorem dicopelval 36466
Description: Membership in value of the partial isomorphism C for a lattice  K. (Contributed by NM, 15-Feb-2014.)
Hypotheses
Ref Expression
dicval.l  |-  .<_  =  ( le `  K )
dicval.a  |-  A  =  ( Atoms `  K )
dicval.h  |-  H  =  ( LHyp `  K
)
dicval.p  |-  P  =  ( ( oc `  K ) `  W
)
dicval.t  |-  T  =  ( ( LTrn `  K
) `  W )
dicval.e  |-  E  =  ( ( TEndo `  K
) `  W )
dicval.i  |-  I  =  ( ( DIsoC `  K
) `  W )
dicelval.f  |-  F  e. 
_V
dicelval.s  |-  S  e. 
_V
Assertion
Ref Expression
dicopelval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. F ,  S >.  e.  ( I `  Q )  <->  ( F  =  ( S `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  S  e.  E ) ) )
Distinct variable groups:    g, K    T, g    g, W    Q, g
Allowed substitution hints:    A( g)    P( g)    S( g)    E( g)    F( g)    H( g)    I(
g)    .<_ ( g)    V( g)

Proof of Theorem dicopelval
Dummy variables  f 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4  |-  .<_  =  ( le `  K )
2 dicval.a . . . 4  |-  A  =  ( Atoms `  K )
3 dicval.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dicval.p . . . 4  |-  P  =  ( ( oc `  K ) `  W
)
5 dicval.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
6 dicval.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
7 dicval.i . . . 4  |-  I  =  ( ( DIsoC `  K
) `  W )
81, 2, 3, 4, 5, 6, 7dicval 36465 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) } )
98eleq2d 2687 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. F ,  S >.  e.  ( I `  Q )  <->  <. F ,  S >.  e.  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) } ) )
10 dicelval.f . . 3  |-  F  e. 
_V
11 dicelval.s . . 3  |-  S  e. 
_V
12 eqeq1 2626 . . . 4  |-  ( f  =  F  ->  (
f  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  <->  F  =  ( s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) ) ) )
1312anbi1d 741 . . 3  |-  ( f  =  F  ->  (
( f  =  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) )  /\  s  e.  E )  <->  ( F  =  ( s `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  s  e.  E ) ) )
14 fveq1 6190 . . . . 5  |-  ( s  =  S  ->  (
s `  ( iota_ g  e.  T  ( g `  P )  =  Q ) )  =  ( S `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) ) )
1514eqeq2d 2632 . . . 4  |-  ( s  =  S  ->  ( F  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  <->  F  =  ( S `  ( iota_ g  e.  T  ( g `  P )  =  Q ) ) ) )
16 eleq1 2689 . . . 4  |-  ( s  =  S  ->  (
s  e.  E  <->  S  e.  E ) )
1715, 16anbi12d 747 . . 3  |-  ( s  =  S  ->  (
( F  =  ( s `  ( iota_ g  e.  T  ( g `
 P )  =  Q ) )  /\  s  e.  E )  <->  ( F  =  ( S `
 ( iota_ g  e.  T  ( g `  P )  =  Q ) )  /\  S  e.  E ) ) )
1810, 11, 13, 17opelopab 4997 . 2  |-  ( <. F ,  S >.  e. 
{ <. f ,  s
>.  |  ( f  =  ( s `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  s  e.  E ) }  <->  ( F  =  ( S `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  S  e.  E ) )
199, 18syl6bb 276 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. F ,  S >.  e.  ( I `  Q )  <->  ( F  =  ( S `  ( iota_ g  e.  T  ( g `  P
)  =  Q ) )  /\  S  e.  E ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653   {copab 4712   ` cfv 5888   iota_crio 6610   lecple 15948   occoc 15949   Atomscatm 34550   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   DIsoCcdic 36461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-dic 36462
This theorem is referenced by:  dicopelval2  36470  dicvaddcl  36479  dicvscacl  36480  dicn0  36481
  Copyright terms: Public domain W3C validator