Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicn0 Structured version   Visualization version   Unicode version

Theorem dicn0 36481
Description: The value of the partial isomorphism C is not empty. (Contributed by NM, 15-Feb-2014.)
Hypotheses
Ref Expression
dicn0.l  |-  .<_  =  ( le `  K )
dicn0.a  |-  A  =  ( Atoms `  K )
dicn0.h  |-  H  =  ( LHyp `  K
)
dicn0.i  |-  I  =  ( ( DIsoC `  K
) `  W )
Assertion
Ref Expression
dicn0  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =/=  (/) )

Proof of Theorem dicn0
Dummy variables  g 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 dicn0.l . . . . . . . 8  |-  .<_  =  ( le `  K )
3 eqid 2622 . . . . . . . 8  |-  ( oc
`  K )  =  ( oc `  K
)
4 dicn0.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
5 dicn0.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
62, 3, 4, 5lhpocnel 35304 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
76adantr 481 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
8 simpr 477 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
9 eqid 2622 . . . . . . 7  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
10 eqid 2622 . . . . . . 7  |-  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )  =  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )
112, 4, 5, 9, 10ltrniotacl 35867 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( oc `  K ) `
 W )  e.  A  /\  -.  (
( oc `  K
) `  W )  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q )  e.  ( (
LTrn `  K ) `  W ) )
121, 7, 8, 11syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  Q )  e.  ( ( LTrn `  K ) `  W
) )
13 eqid 2622 . . . . . 6  |-  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )  =  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )
14 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
1513, 14tendo02 36075 . . . . 5  |-  ( (
iota_ g  e.  (
( LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  Q )  e.  ( ( LTrn `  K
) `  W )  ->  ( ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) )  =  (  _I  |`  ( Base `  K ) ) )
1612, 15syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) )  =  (  _I  |`  ( Base `  K ) ) )
1716eqcomd 2628 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
(  _I  |`  ( Base `  K ) )  =  ( ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) ) )
18 eqid 2622 . . . . 5  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
1914, 5, 9, 18, 13tendo0cl 36078 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) )  e.  ( (
TEndo `  K ) `  W ) )
2019adantr 481 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) )  e.  ( (
TEndo `  K ) `  W ) )
21 eqid 2622 . . . 4  |-  ( ( oc `  K ) `
 W )  =  ( ( oc `  K ) `  W
)
22 dicn0.i . . . 4  |-  I  =  ( ( DIsoC `  K
) `  W )
23 fvex 6201 . . . . 5  |-  ( Base `  K )  e.  _V
24 resiexg 7102 . . . . 5  |-  ( (
Base `  K )  e.  _V  ->  (  _I  |`  ( Base `  K
) )  e.  _V )
2523, 24ax-mp 5 . . . 4  |-  (  _I  |`  ( Base `  K
) )  e.  _V
26 fvex 6201 . . . . 5  |-  ( (
LTrn `  K ) `  W )  e.  _V
2726mptex 6486 . . . 4  |-  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )  e.  _V
282, 4, 5, 21, 9, 18, 22, 25, 27dicopelval 36466 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. (  _I  |`  ( Base `  K ) ) ,  ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) >.  e.  (
I `  Q )  <->  ( (  _I  |`  ( Base `  K ) )  =  ( ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) ) `  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  Q ) )  /\  (
f  e.  ( (
LTrn `  K ) `  W )  |->  (  _I  |`  ( Base `  K
) ) )  e.  ( ( TEndo `  K
) `  W )
) ) )
2917, 20, 28mpbir2and 957 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  <. (  _I  |`  ( Base `  K ) ) ,  ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) >.  e.  (
I `  Q )
)
30 ne0i 3921 . 2  |-  ( <.
(  _I  |`  ( Base `  K ) ) ,  ( f  e.  ( ( LTrn `  K
) `  W )  |->  (  _I  |`  ( Base `  K ) ) ) >.  e.  (
I `  Q )  ->  ( I `  Q
)  =/=  (/) )
3129, 30syl 17 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( I `  Q
)  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    |` cres 5116   ` cfv 5888   iota_crio 6610   Basecbs 15857   lecple 15948   occoc 15949   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   DIsoCcdic 36461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-dic 36462
This theorem is referenced by:  diclss  36482
  Copyright terms: Public domain W3C validator