MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difprsn2 Structured version   Visualization version   Unicode version

Theorem difprsn2 4331
Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
difprsn2  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { B } )  =  { A }
)

Proof of Theorem difprsn2
StepHypRef Expression
1 prcom 4267 . . 3  |-  { A ,  B }  =  { B ,  A }
21difeq1i 3724 . 2  |-  ( { A ,  B }  \  { B } )  =  ( { B ,  A }  \  { B } )
3 necom 2847 . . 3  |-  ( A  =/=  B  <->  B  =/=  A )
4 difprsn1 4330 . . 3  |-  ( B  =/=  A  ->  ( { B ,  A }  \  { B } )  =  { A }
)
53, 4sylbi 207 . 2  |-  ( A  =/=  B  ->  ( { B ,  A }  \  { B } )  =  { A }
)
62, 5syl5eq 2668 1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { B } )  =  { A }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    =/= wne 2794    \ cdif 3571   {csn 4177   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by:  f12dfv  6529  pmtrprfval  17907  nbgr2vtx1edg  26246  nbuhgr2vtx1edgb  26248  nfrgr2v  27136  ldepsnlinc  42297
  Copyright terms: Public domain W3C validator