MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr2vtx1edgb Structured version   Visualization version   Unicode version

Theorem nbuhgr2vtx1edgb 26248
Description: If a hypergraph has two vertices, and there is an edge between the vertices, then each vertex is the neighbor of the other vertex. (Contributed by AV, 2-Nov-2020.)
Hypotheses
Ref Expression
nbgr2vtx1edg.v  |-  V  =  (Vtx `  G )
nbgr2vtx1edg.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
nbuhgr2vtx1edgb  |-  ( ( G  e. UHGraph  /\  ( # `
 V )  =  2 )  ->  ( V  e.  E  <->  A. v  e.  V  A. n  e.  ( V  \  {
v } ) n  e.  ( G NeighbVtx  v ) ) )
Distinct variable groups:    n, E    n, G, v    n, V, v
Allowed substitution hint:    E( v)

Proof of Theorem nbuhgr2vtx1edgb
Dummy variables  a 
b  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nbgr2vtx1edg.v . . . . 5  |-  V  =  (Vtx `  G )
2 fvex 6201 . . . . 5  |-  (Vtx `  G )  e.  _V
31, 2eqeltri 2697 . . . 4  |-  V  e. 
_V
4 hash2prb 13254 . . . 4  |-  ( V  e.  _V  ->  (
( # `  V )  =  2  <->  E. a  e.  V  E. b  e.  V  ( a  =/=  b  /\  V  =  { a ,  b } ) ) )
53, 4ax-mp 5 . . 3  |-  ( (
# `  V )  =  2  <->  E. a  e.  V  E. b  e.  V  ( a  =/=  b  /\  V  =  { a ,  b } ) )
6 simpr 477 . . . . . . . . . . . 12  |-  ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  ->  ( a  e.  V  /\  b  e.  V ) )
76ancomd 467 . . . . . . . . . . 11  |-  ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  ->  ( b  e.  V  /\  a  e.  V ) )
87ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  (
b  e.  V  /\  a  e.  V )
)
9 id 22 . . . . . . . . . . . . 13  |-  ( a  =/=  b  ->  a  =/=  b )
109necomd 2849 . . . . . . . . . . . 12  |-  ( a  =/=  b  ->  b  =/=  a )
1110adantr 481 . . . . . . . . . . 11  |-  ( ( a  =/=  b  /\  V  =  { a ,  b } )  ->  b  =/=  a
)
1211ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  b  =/=  a )
13 prcom 4267 . . . . . . . . . . . . . 14  |-  { a ,  b }  =  { b ,  a }
1413eleq1i 2692 . . . . . . . . . . . . 13  |-  ( { a ,  b }  e.  E  <->  { b ,  a }  e.  E )
1514biimpi 206 . . . . . . . . . . . 12  |-  ( { a ,  b }  e.  E  ->  { b ,  a }  e.  E )
16 sseq2 3627 . . . . . . . . . . . . 13  |-  ( e  =  { b ,  a }  ->  ( { a ,  b }  C_  e  <->  { a ,  b }  C_  { b ,  a } ) )
1716adantl 482 . . . . . . . . . . . 12  |-  ( ( { a ,  b }  e.  E  /\  e  =  { b ,  a } )  ->  ( { a ,  b }  C_  e 
<->  { a ,  b }  C_  { b ,  a } ) )
1813eqimssi 3659 . . . . . . . . . . . . 13  |-  { a ,  b }  C_  { b ,  a }
1918a1i 11 . . . . . . . . . . . 12  |-  ( { a ,  b }  e.  E  ->  { a ,  b }  C_  { b ,  a } )
2015, 17, 19rspcedvd 3317 . . . . . . . . . . 11  |-  ( { a ,  b }  e.  E  ->  E. e  e.  E  { a ,  b }  C_  e )
2120adantl 482 . . . . . . . . . 10  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  E. e  e.  E  { a ,  b }  C_  e )
22 nbgr2vtx1edg.e . . . . . . . . . . . 12  |-  E  =  (Edg `  G )
231, 22nbgrel 26238 . . . . . . . . . . 11  |-  ( G  e. UHGraph  ->  ( b  e.  ( G NeighbVtx  a )  <->  ( ( b  e.  V  /\  a  e.  V
)  /\  b  =/=  a  /\  E. e  e.  E  { a ,  b }  C_  e
) ) )
2423ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  (
b  e.  ( G NeighbVtx  a )  <->  ( (
b  e.  V  /\  a  e.  V )  /\  b  =/=  a  /\  E. e  e.  E  { a ,  b }  C_  e )
) )
258, 12, 21, 24mpbir3and 1245 . . . . . . . . 9  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  b  e.  ( G NeighbVtx  a )
)
266ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  (
a  e.  V  /\  b  e.  V )
)
27 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  a  =/=  b )
28 id 22 . . . . . . . . . . . 12  |-  ( { a ,  b }  e.  E  ->  { a ,  b }  e.  E )
29 sseq2 3627 . . . . . . . . . . . . 13  |-  ( e  =  { a ,  b }  ->  ( { b ,  a }  C_  e  <->  { b ,  a }  C_  { a ,  b } ) )
3029adantl 482 . . . . . . . . . . . 12  |-  ( ( { a ,  b }  e.  E  /\  e  =  { a ,  b } )  ->  ( { b ,  a }  C_  e 
<->  { b ,  a }  C_  { a ,  b } ) )
31 prcom 4267 . . . . . . . . . . . . . 14  |-  { b ,  a }  =  { a ,  b }
3231eqimssi 3659 . . . . . . . . . . . . 13  |-  { b ,  a }  C_  { a ,  b }
3332a1i 11 . . . . . . . . . . . 12  |-  ( { a ,  b }  e.  E  ->  { b ,  a }  C_  { a ,  b } )
3428, 30, 33rspcedvd 3317 . . . . . . . . . . 11  |-  ( { a ,  b }  e.  E  ->  E. e  e.  E  { b ,  a }  C_  e )
3534adantl 482 . . . . . . . . . 10  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  E. e  e.  E  { b ,  a }  C_  e )
361, 22nbgrel 26238 . . . . . . . . . . 11  |-  ( G  e. UHGraph  ->  ( a  e.  ( G NeighbVtx  b )  <->  ( ( a  e.  V  /\  b  e.  V
)  /\  a  =/=  b  /\  E. e  e.  E  { b ,  a }  C_  e
) ) )
3736ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  (
a  e.  ( G NeighbVtx  b )  <->  ( (
a  e.  V  /\  b  e.  V )  /\  a  =/=  b  /\  E. e  e.  E  { b ,  a }  C_  e )
) )
3826, 27, 35, 37mpbir3and 1245 . . . . . . . . 9  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  a  e.  ( G NeighbVtx  b )
)
3925, 38jca 554 . . . . . . . 8  |-  ( ( ( ( G  e. UHGraph  /\  ( a  e.  V  /\  b  e.  V
) )  /\  (
a  =/=  b  /\  V  =  { a ,  b } ) )  /\  { a ,  b }  e.  E )  ->  (
b  e.  ( G NeighbVtx  a )  /\  a  e.  ( G NeighbVtx  b )
) )
4039ex 450 . . . . . . 7  |-  ( ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  ( a  =/=  b  /\  V  =  { a ,  b } ) )  -> 
( { a ,  b }  e.  E  ->  ( b  e.  ( G NeighbVtx  a )  /\  a  e.  ( G NeighbVtx  b )
) ) )
411, 22nbuhgr2vtx1edgblem 26247 . . . . . . . . . . . 12  |-  ( ( G  e. UHGraph  /\  V  =  { a ,  b }  /\  a  e.  ( G NeighbVtx  b )
)  ->  { a ,  b }  e.  E )
42413exp 1264 . . . . . . . . . . 11  |-  ( G  e. UHGraph  ->  ( V  =  { a ,  b }  ->  ( a  e.  ( G NeighbVtx  b )  ->  { a ,  b }  e.  E ) ) )
4342adantr 481 . . . . . . . . . 10  |-  ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  ->  ( V  =  { a ,  b }  ->  ( a  e.  ( G NeighbVtx  b )  ->  { a ,  b }  e.  E ) ) )
4443adantld 483 . . . . . . . . 9  |-  ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  ->  ( (
a  =/=  b  /\  V  =  { a ,  b } )  ->  ( a  e.  ( G NeighbVtx  b )  ->  { a ,  b }  e.  E ) ) )
4544imp 445 . . . . . . . 8  |-  ( ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  ( a  =/=  b  /\  V  =  { a ,  b } ) )  -> 
( a  e.  ( G NeighbVtx  b )  ->  { a ,  b }  e.  E ) )
4645adantld 483 . . . . . . 7  |-  ( ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  ( a  =/=  b  /\  V  =  { a ,  b } ) )  -> 
( ( b  e.  ( G NeighbVtx  a )  /\  a  e.  ( G NeighbVtx  b ) )  ->  { a ,  b }  e.  E ) )
4740, 46impbid 202 . . . . . 6  |-  ( ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  ( a  =/=  b  /\  V  =  { a ,  b } ) )  -> 
( { a ,  b }  e.  E  <->  ( b  e.  ( G NeighbVtx  a )  /\  a  e.  ( G NeighbVtx  b )
) ) )
48 eleq1 2689 . . . . . . . . 9  |-  ( V  =  { a ,  b }  ->  ( V  e.  E  <->  { a ,  b }  e.  E ) )
4948adantl 482 . . . . . . . 8  |-  ( ( a  =/=  b  /\  V  =  { a ,  b } )  ->  ( V  e.  E  <->  { a ,  b }  e.  E ) )
50 id 22 . . . . . . . . . 10  |-  ( V  =  { a ,  b }  ->  V  =  { a ,  b } )
51 difeq1 3721 . . . . . . . . . . 11  |-  ( V  =  { a ,  b }  ->  ( V  \  { v } )  =  ( { a ,  b } 
\  { v } ) )
5251raleqdv 3144 . . . . . . . . . 10  |-  ( V  =  { a ,  b }  ->  ( A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v )  <->  A. n  e.  ( { a ,  b }  \  {
v } ) n  e.  ( G NeighbVtx  v ) ) )
5350, 52raleqbidv 3152 . . . . . . . . 9  |-  ( V  =  { a ,  b }  ->  ( A. v  e.  V  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v )  <->  A. v  e.  { a ,  b } A. n  e.  ( { a ,  b }  \  {
v } ) n  e.  ( G NeighbVtx  v ) ) )
54 vex 3203 . . . . . . . . . . 11  |-  a  e. 
_V
55 vex 3203 . . . . . . . . . . 11  |-  b  e. 
_V
56 sneq 4187 . . . . . . . . . . . . 13  |-  ( v  =  a  ->  { v }  =  { a } )
5756difeq2d 3728 . . . . . . . . . . . 12  |-  ( v  =  a  ->  ( { a ,  b }  \  { v } )  =  ( { a ,  b }  \  { a } ) )
58 oveq2 6658 . . . . . . . . . . . . 13  |-  ( v  =  a  ->  ( G NeighbVtx  v )  =  ( G NeighbVtx  a ) )
5958eleq2d 2687 . . . . . . . . . . . 12  |-  ( v  =  a  ->  (
n  e.  ( G NeighbVtx  v )  <->  n  e.  ( G NeighbVtx  a ) ) )
6057, 59raleqbidv 3152 . . . . . . . . . . 11  |-  ( v  =  a  ->  ( A. n  e.  ( { a ,  b }  \  { v } ) n  e.  ( G NeighbVtx  v )  <->  A. n  e.  ( { a ,  b } 
\  { a } ) n  e.  ( G NeighbVtx  a ) ) )
61 sneq 4187 . . . . . . . . . . . . 13  |-  ( v  =  b  ->  { v }  =  { b } )
6261difeq2d 3728 . . . . . . . . . . . 12  |-  ( v  =  b  ->  ( { a ,  b }  \  { v } )  =  ( { a ,  b }  \  { b } ) )
63 oveq2 6658 . . . . . . . . . . . . 13  |-  ( v  =  b  ->  ( G NeighbVtx  v )  =  ( G NeighbVtx  b ) )
6463eleq2d 2687 . . . . . . . . . . . 12  |-  ( v  =  b  ->  (
n  e.  ( G NeighbVtx  v )  <->  n  e.  ( G NeighbVtx  b ) ) )
6562, 64raleqbidv 3152 . . . . . . . . . . 11  |-  ( v  =  b  ->  ( A. n  e.  ( { a ,  b }  \  { v } ) n  e.  ( G NeighbVtx  v )  <->  A. n  e.  ( { a ,  b } 
\  { b } ) n  e.  ( G NeighbVtx  b ) ) )
6654, 55, 60, 65ralpr 4238 . . . . . . . . . 10  |-  ( A. v  e.  { a ,  b } A. n  e.  ( {
a ,  b } 
\  { v } ) n  e.  ( G NeighbVtx  v )  <->  ( A. n  e.  ( {
a ,  b } 
\  { a } ) n  e.  ( G NeighbVtx  a )  /\  A. n  e.  ( {
a ,  b } 
\  { b } ) n  e.  ( G NeighbVtx  b ) ) )
67 difprsn1 4330 . . . . . . . . . . . . 13  |-  ( a  =/=  b  ->  ( { a ,  b }  \  { a } )  =  {
b } )
6867raleqdv 3144 . . . . . . . . . . . 12  |-  ( a  =/=  b  ->  ( A. n  e.  ( { a ,  b }  \  { a } ) n  e.  ( G NeighbVtx  a )  <->  A. n  e.  { b } n  e.  ( G NeighbVtx  a ) ) )
69 eleq1 2689 . . . . . . . . . . . . 13  |-  ( n  =  b  ->  (
n  e.  ( G NeighbVtx  a )  <->  b  e.  ( G NeighbVtx  a ) ) )
7055, 69ralsn 4222 . . . . . . . . . . . 12  |-  ( A. n  e.  { b } n  e.  ( G NeighbVtx  a )  <->  b  e.  ( G NeighbVtx  a ) )
7168, 70syl6bb 276 . . . . . . . . . . 11  |-  ( a  =/=  b  ->  ( A. n  e.  ( { a ,  b }  \  { a } ) n  e.  ( G NeighbVtx  a )  <->  b  e.  ( G NeighbVtx  a ) ) )
72 difprsn2 4331 . . . . . . . . . . . . 13  |-  ( a  =/=  b  ->  ( { a ,  b }  \  { b } )  =  {
a } )
7372raleqdv 3144 . . . . . . . . . . . 12  |-  ( a  =/=  b  ->  ( A. n  e.  ( { a ,  b }  \  { b } ) n  e.  ( G NeighbVtx  b )  <->  A. n  e.  { a } n  e.  ( G NeighbVtx  b ) ) )
74 eleq1 2689 . . . . . . . . . . . . 13  |-  ( n  =  a  ->  (
n  e.  ( G NeighbVtx  b )  <->  a  e.  ( G NeighbVtx  b ) ) )
7554, 74ralsn 4222 . . . . . . . . . . . 12  |-  ( A. n  e.  { a } n  e.  ( G NeighbVtx  b )  <->  a  e.  ( G NeighbVtx  b ) )
7673, 75syl6bb 276 . . . . . . . . . . 11  |-  ( a  =/=  b  ->  ( A. n  e.  ( { a ,  b }  \  { b } ) n  e.  ( G NeighbVtx  b )  <->  a  e.  ( G NeighbVtx  b ) ) )
7771, 76anbi12d 747 . . . . . . . . . 10  |-  ( a  =/=  b  ->  (
( A. n  e.  ( { a ,  b }  \  {
a } ) n  e.  ( G NeighbVtx  a )  /\  A. n  e.  ( { a ,  b }  \  {
b } ) n  e.  ( G NeighbVtx  b ) )  <->  ( b  e.  ( G NeighbVtx  a )  /\  a  e.  ( G NeighbVtx  b ) ) ) )
7866, 77syl5bb 272 . . . . . . . . 9  |-  ( a  =/=  b  ->  ( A. v  e.  { a ,  b } A. n  e.  ( {
a ,  b } 
\  { v } ) n  e.  ( G NeighbVtx  v )  <->  ( b  e.  ( G NeighbVtx  a )  /\  a  e.  ( G NeighbVtx  b ) ) ) )
7953, 78sylan9bbr 737 . . . . . . . 8  |-  ( ( a  =/=  b  /\  V  =  { a ,  b } )  ->  ( A. v  e.  V  A. n  e.  ( V  \  {
v } ) n  e.  ( G NeighbVtx  v )  <-> 
( b  e.  ( G NeighbVtx  a )  /\  a  e.  ( G NeighbVtx  b )
) ) )
8049, 79bibi12d 335 . . . . . . 7  |-  ( ( a  =/=  b  /\  V  =  { a ,  b } )  ->  ( ( V  e.  E  <->  A. v  e.  V  A. n  e.  ( V  \  {
v } ) n  e.  ( G NeighbVtx  v ) )  <->  ( { a ,  b }  e.  E 
<->  ( b  e.  ( G NeighbVtx  a )  /\  a  e.  ( G NeighbVtx  b )
) ) ) )
8180adantl 482 . . . . . 6  |-  ( ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  ( a  =/=  b  /\  V  =  { a ,  b } ) )  -> 
( ( V  e.  E  <->  A. v  e.  V  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) )  <->  ( {
a ,  b }  e.  E  <->  ( b  e.  ( G NeighbVtx  a )  /\  a  e.  ( G NeighbVtx  b ) ) ) ) )
8247, 81mpbird 247 . . . . 5  |-  ( ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  ( a  =/=  b  /\  V  =  { a ,  b } ) )  -> 
( V  e.  E  <->  A. v  e.  V  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) ) )
8382ex 450 . . . 4  |-  ( ( G  e. UHGraph  /\  (
a  e.  V  /\  b  e.  V )
)  ->  ( (
a  =/=  b  /\  V  =  { a ,  b } )  ->  ( V  e.  E  <->  A. v  e.  V  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) ) ) )
8483rexlimdvva 3038 . . 3  |-  ( G  e. UHGraph  ->  ( E. a  e.  V  E. b  e.  V  ( a  =/=  b  /\  V  =  { a ,  b } )  ->  ( V  e.  E  <->  A. v  e.  V  A. n  e.  ( V  \  {
v } ) n  e.  ( G NeighbVtx  v ) ) ) )
855, 84syl5bi 232 . 2  |-  ( G  e. UHGraph  ->  ( ( # `  V )  =  2  ->  ( V  e.  E  <->  A. v  e.  V  A. n  e.  ( V  \  { v } ) n  e.  ( G NeighbVtx  v ) ) ) )
8685imp 445 1  |-  ( ( G  e. UHGraph  /\  ( # `
 V )  =  2 )  ->  ( V  e.  E  <->  A. v  e.  V  A. n  e.  ( V  \  {
v } ) n  e.  ( G NeighbVtx  v ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   2c2 11070   #chash 13117  Vtxcvtx 25874  Edgcedg 25939   UHGraph cuhgr 25951   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-nbgr 26228
This theorem is referenced by:  uvtx2vtx1edgb  26300
  Copyright terms: Public domain W3C validator