![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcsb1 | Structured version Visualization version Unicode version |
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfcsb1.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfcsb1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 11 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | nfcsb1d 3547 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | trud 1493 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-sbc 3436 df-csb 3534 |
This theorem is referenced by: nfcsb1v 3549 fprodsplit1f 14721 iundisj 23316 disjabrex 29395 disjabrexf 29396 iundisjf 29402 iundisjfi 29555 disjinfi 39380 fsumsplit1 39804 fsumsermpt 39811 climsubmpt 39892 climeldmeqmpt 39900 climfveqmpt 39903 climfveqmpt3 39914 climeldmeqmpt3 39921 climinf2mpt 39946 climinfmpt 39947 dvmptmulf 40152 dvnmptdivc 40153 sge0f1o 40599 sge0lempt 40627 sge0isummpt2 40649 meadjiun 40683 hoimbl2 40879 vonhoire 40886 |
Copyright terms: Public domain | W3C validator |