Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjuni Structured version   Visualization version   Unicode version

Theorem meadjuni 40674
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjuni.m  |-  ( ph  ->  M  e. Meas )
meadjuni.s  |-  S  =  dom  M
meadjuni.x  |-  ( ph  ->  X  C_  S )
meadjuni.cnb  |-  ( ph  ->  X  ~<_  om )
meadjuni.dj  |-  ( ph  -> Disj  x  e.  X  x
)
Assertion
Ref Expression
meadjuni  |-  ( ph  ->  ( M `  U. X )  =  (Σ^ `  ( M  |`  X ) ) )
Distinct variable group:    x, X
Allowed substitution hints:    ph( x)    S( x)    M( x)

Proof of Theorem meadjuni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 meadjuni.cnb . . 3  |-  ( ph  ->  X  ~<_  om )
2 meadjuni.dj . . 3  |-  ( ph  -> Disj  x  e.  X  x
)
31, 2jca 554 . 2  |-  ( ph  ->  ( X  ~<_  om  /\ Disj  x  e.  X  x ) )
4 meadjuni.x . . . . 5  |-  ( ph  ->  X  C_  S )
5 meadjuni.s . . . . 5  |-  S  =  dom  M
64, 5syl6sseq 3651 . . . 4  |-  ( ph  ->  X  C_  dom  M )
7 meadjuni.m . . . . . . 7  |-  ( ph  ->  M  e. Meas )
87, 5dmmeasal 40669 . . . . . 6  |-  ( ph  ->  S  e. SAlg )
98, 4ssexd 4805 . . . . 5  |-  ( ph  ->  X  e.  _V )
10 elpwg 4166 . . . . 5  |-  ( X  e.  _V  ->  ( X  e.  ~P dom  M  <-> 
X  C_  dom  M ) )
119, 10syl 17 . . . 4  |-  ( ph  ->  ( X  e.  ~P dom  M  <->  X  C_  dom  M
) )
126, 11mpbird 247 . . 3  |-  ( ph  ->  X  e.  ~P dom  M )
13 ismea 40668 . . . . 5  |-  ( M  e. Meas 
<->  ( ( ( M : dom  M --> ( 0 [,] +oo )  /\  dom  M  e. SAlg )  /\  ( M `  (/) )  =  0 )  /\  A. y  e.  ~P  dom  M
( ( y  ~<_  om 
/\ Disj  x  e.  y  x )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y
) ) ) ) )
147, 13sylib 208 . . . 4  |-  ( ph  ->  ( ( ( M : dom  M --> ( 0 [,] +oo )  /\  dom  M  e. SAlg )  /\  ( M `  (/) )  =  0 )  /\  A. y  e.  ~P  dom  M
( ( y  ~<_  om 
/\ Disj  x  e.  y  x )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y
) ) ) ) )
1514simprd 479 . . 3  |-  ( ph  ->  A. y  e.  ~P  dom  M ( ( y  ~<_  om  /\ Disj  x  e.  y  x )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y
) ) ) )
16 breq1 4656 . . . . . 6  |-  ( y  =  X  ->  (
y  ~<_  om  <->  X  ~<_  om )
)
17 disjeq1 4627 . . . . . 6  |-  ( y  =  X  ->  (Disj  x  e.  y  x  <-> Disj  x  e.  X  x ) )
1816, 17anbi12d 747 . . . . 5  |-  ( y  =  X  ->  (
( y  ~<_  om  /\ Disj  x  e.  y  x )  <-> 
( X  ~<_  om  /\ Disj  x  e.  X  x ) ) )
19 unieq 4444 . . . . . . 7  |-  ( y  =  X  ->  U. y  =  U. X )
2019fveq2d 6195 . . . . . 6  |-  ( y  =  X  ->  ( M `  U. y )  =  ( M `  U. X ) )
21 reseq2 5391 . . . . . . 7  |-  ( y  =  X  ->  ( M  |`  y )  =  ( M  |`  X ) )
2221fveq2d 6195 . . . . . 6  |-  ( y  =  X  ->  (Σ^ `  ( M  |`  y ) )  =  (Σ^ `  ( M  |`  X ) ) )
2320, 22eqeq12d 2637 . . . . 5  |-  ( y  =  X  ->  (
( M `  U. y )  =  (Σ^ `  ( M  |`  y ) )  <-> 
( M `  U. X )  =  (Σ^ `  ( M  |`  X ) ) ) )
2418, 23imbi12d 334 . . . 4  |-  ( y  =  X  ->  (
( ( y  ~<_  om 
/\ Disj  x  e.  y  x )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y
) ) )  <->  ( ( X  ~<_  om  /\ Disj  x  e.  X  x )  -> 
( M `  U. X )  =  (Σ^ `  ( M  |`  X ) ) ) ) )
2524rspcva 3307 . . 3  |-  ( ( X  e.  ~P dom  M  /\  A. y  e. 
~P  dom  M (
( y  ~<_  om  /\ Disj  x  e.  y  x )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y ) ) ) )  ->  (
( X  ~<_  om  /\ Disj  x  e.  X  x )  ->  ( M `  U. X )  =  (Σ^ `  ( M  |`  X ) ) ) )
2612, 15, 25syl2anc 693 . 2  |-  ( ph  ->  ( ( X  ~<_  om 
/\ Disj  x  e.  X  x )  ->  ( M `  U. X )  =  (Σ^ `  ( M  |`  X ) ) ) )
273, 26mpd 15 1  |-  ( ph  ->  ( M `  U. X )  =  (Σ^ `  ( M  |`  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436  Disj wdisj 4620   class class class wbr 4653   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953   0cc0 9936   +oocpnf 10071   [,]cicc 12178  SAlgcsalg 40528  Σ^csumge0 40579  Meascmea 40666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-mea 40667
This theorem is referenced by:  meadjun  40679  meadjiun  40683
  Copyright terms: Public domain W3C validator