Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstrvprob Structured version   Visualization version   Unicode version

Theorem dstrvprob 30533
Description: The distribution of a random variable is a probability law. (TODO: could be shortened using dstrvval 30532) (Contributed by Thierry Arnoux, 10-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1  |-  ( ph  ->  P  e. Prob )
dstrvprob.2  |-  ( ph  ->  X  e.  (rRndVar `  P
) )
dstrvprob.3  |-  ( ph  ->  D  =  ( a  e. 𝔅  |->  ( P `  ( XRV/𝑐  _E  a ) ) ) )
Assertion
Ref Expression
dstrvprob  |-  ( ph  ->  D  e. Prob )
Distinct variable groups:    P, a    X, a    D, a    ph, a

Proof of Theorem dstrvprob
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.3 . . . . . 6  |-  ( ph  ->  D  =  ( a  e. 𝔅  |->  ( P `  ( XRV/𝑐  _E  a ) ) ) )
2 dstrvprob.1 . . . . . . . . 9  |-  ( ph  ->  P  e. Prob )
32adantr 481 . . . . . . . 8  |-  ( (
ph  /\  a  e. 𝔅 )  ->  P  e. Prob )
4 dstrvprob.2 . . . . . . . . . 10  |-  ( ph  ->  X  e.  (rRndVar `  P
) )
54adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  a  e. 𝔅 )  ->  X  e.  (rRndVar `  P
) )
6 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  a  e. 𝔅 )  -> 
a  e. 𝔅 )
73, 5, 6orvcelel 30531 . . . . . . . 8  |-  ( (
ph  /\  a  e. 𝔅 )  -> 
( XRV/𝑐  _E  a )  e.  dom  P )
8 prob01 30475 . . . . . . . 8  |-  ( ( P  e. Prob  /\  ( XRV/𝑐  _E  a )  e.  dom  P )  ->  ( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] 1
) )
93, 7, 8syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  a  e. 𝔅 )  -> 
( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] 1
) )
10 elunitrn 29943 . . . . . . . . 9  |-  ( ( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] 1
)  ->  ( P `  ( XRV/𝑐  _E  a ) )  e.  RR )
1110rexrd 10089 . . . . . . . 8  |-  ( ( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] 1
)  ->  ( P `  ( XRV/𝑐  _E  a ) )  e. 
RR* )
12 elunitge0 29945 . . . . . . . 8  |-  ( ( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] 1
)  ->  0  <_  ( P `  ( XRV/𝑐  _E  a ) ) )
13 elxrge0 12281 . . . . . . . 8  |-  ( ( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] +oo ) 
<->  ( ( P `  ( XRV/𝑐  _E  a ) )  e. 
RR*  /\  0  <_  ( P `  ( XRV/𝑐  _E  a ) ) ) )
1411, 12, 13sylanbrc 698 . . . . . . 7  |-  ( ( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] 1
)  ->  ( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] +oo ) )
159, 14syl 17 . . . . . 6  |-  ( (
ph  /\  a  e. 𝔅 )  -> 
( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] +oo ) )
161, 15fmpt3d 6386 . . . . 5  |-  ( ph  ->  D :𝔅 --> ( 0 [,] +oo ) )
17 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  a  =  (/) )  ->  a  =  (/) )
1817oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  a  =  (/) )  ->  ( XRV/𝑐  _E  a
)  =  ( XRV/𝑐  _E  (/) ) )
1918fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  a  =  (/) )  ->  ( P `  ( XRV/𝑐  _E  a ) )  =  ( P `  ( XRV/𝑐  _E  (/) ) ) )
20 brsigarn 30247 . . . . . . . . 9  |- 𝔅  e.  (sigAlgebra `  RR )
21 elrnsiga 30189 . . . . . . . . 9  |-  (𝔅  e.  (sigAlgebra `  RR )  -> 𝔅  e.  U. ran sigAlgebra )
22 0elsiga 30177 . . . . . . . . 9  |-  (𝔅  e.  U. ran sigAlgebra  ->  (/)  e. 𝔅 )
2320, 21, 22mp2b 10 . . . . . . . 8  |-  (/)  e. 𝔅
2423a1i 11 . . . . . . 7  |-  ( ph  -> 
(/)  e. 𝔅 )
252, 4, 24orvcelel 30531 . . . . . . . 8  |-  ( ph  ->  ( XRV/𝑐  _E  (/) )  e.  dom  P )
262, 25probvalrnd 30486 . . . . . . 7  |-  ( ph  ->  ( P `  ( XRV/𝑐  _E  (/) ) )  e.  RR )
271, 19, 24, 26fvmptd 6288 . . . . . 6  |-  ( ph  ->  ( D `  (/) )  =  ( P `  ( XRV/𝑐  _E  (/) ) ) )
282, 4, 24orvcelval 30530 . . . . . . 7  |-  ( ph  ->  ( XRV/𝑐  _E  (/) )  =  ( `' X " (/) ) )
2928fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( P `  ( XRV/𝑐  _E  (/) ) )  =  ( P `  ( `' X " (/) ) ) )
30 ima0 5481 . . . . . . . 8  |-  ( `' X " (/) )  =  (/)
3130fveq2i 6194 . . . . . . 7  |-  ( P `
 ( `' X "
(/) ) )  =  ( P `  (/) )
32 probnul 30476 . . . . . . . 8  |-  ( P  e. Prob  ->  ( P `  (/) )  =  0 )
332, 32syl 17 . . . . . . 7  |-  ( ph  ->  ( P `  (/) )  =  0 )
3431, 33syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( P `  ( `' X " (/) ) )  =  0 )
3527, 29, 343eqtrd 2660 . . . . 5  |-  ( ph  ->  ( D `  (/) )  =  0 )
362, 4rrvvf 30506 . . . . . . . . . . . 12  |-  ( ph  ->  X : U. dom  P --> RR )
3736ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  X : U. dom  P --> RR )
38 ffun 6048 . . . . . . . . . . 11  |-  ( X : U. dom  P --> RR  ->  Fun  X )
3937, 38syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  Fun  X )
40 unipreima 29446 . . . . . . . . . . 11  |-  ( Fun 
X  ->  ( `' X " U. x )  =  U_ a  e.  x  ( `' X " a ) )
4140fveq2d 6195 . . . . . . . . . 10  |-  ( Fun 
X  ->  ( P `  ( `' X " U. x ) )  =  ( P `  U_ a  e.  x  ( `' X " a ) ) )
4239, 41syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> 
( P `  ( `' X " U. x
) )  =  ( P `  U_ a  e.  x  ( `' X " a ) ) )
432ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  P  e. Prob )
44 domprobmeas 30472 . . . . . . . . . . 11  |-  ( P  e. Prob  ->  P  e.  (measures `  dom  P ) )
4543, 44syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  P  e.  (measures `  dom  P ) )
46 nfv 1843 . . . . . . . . . . . 12  |-  F/ a ( ph  /\  x  e.  ~P𝔅
)
47 nfv 1843 . . . . . . . . . . . . 13  |-  F/ a  x  ~<_  om
48 nfdisj1 4633 . . . . . . . . . . . . 13  |-  F/ aDisj  a  e.  x  a
4947, 48nfan 1828 . . . . . . . . . . . 12  |-  F/ a ( x  ~<_  om  /\ Disj  a  e.  x  a )
5046, 49nfan 1828 . . . . . . . . . . 11  |-  F/ a ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )
51 simplll 798 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  ph )
52 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  a  e.  x )
53 simpllr 799 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  x  e.  ~P𝔅
)
54 elelpwi 4171 . . . . . . . . . . . . . 14  |-  ( ( a  e.  x  /\  x  e.  ~P𝔅
)  ->  a  e. 𝔅 )
5552, 53, 54syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  a  e. 𝔅 )
562, 4rrvfinvima 30512 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. a  e. 𝔅  ( `' X "
a )  e.  dom  P )
5756r19.21bi 2932 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e. 𝔅 )  -> 
( `' X "
a )  e.  dom  P )
5851, 55, 57syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  ( `' X "
a )  e.  dom  P )
5958ex 450 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> 
( a  e.  x  ->  ( `' X "
a )  e.  dom  P ) )
6050, 59ralrimi 2957 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  A. a  e.  x  ( `' X " a )  e.  dom  P )
61 simprl 794 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  x  ~<_  om )
62 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> Disj  a  e.  x  a )
63 disjpreima 29397 . . . . . . . . . . 11  |-  ( ( Fun  X  /\ Disj  a  e.  x  a )  -> Disj  a  e.  x  ( `' X " a ) )
6439, 62, 63syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> Disj  a  e.  x  ( `' X " a ) )
65 measvuni 30277 . . . . . . . . . 10  |-  ( ( P  e.  (measures `  dom  P )  /\  A. a  e.  x  ( `' X " a )  e. 
dom  P  /\  (
x  ~<_  om  /\ Disj  a  e.  x  ( `' X " a ) ) )  ->  ( P `  U_ a  e.  x  ( `' X " a ) )  = Σ* a  e.  x
( P `  ( `' X " a ) ) )
6645, 60, 61, 64, 65syl112anc 1330 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> 
( P `  U_ a  e.  x  ( `' X " a ) )  = Σ* a  e.  x ( P `  ( `' X " a ) ) )
6742, 66eqtrd 2656 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> 
( P `  ( `' X " U. x
) )  = Σ* a  e.  x ( P `  ( `' X " a ) ) )
684ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  X  e.  (rRndVar `  P
) )
691ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  D  =  ( a  e. 𝔅  |->  ( P `  ( XRV/𝑐  _E  a ) ) ) )
7020, 21mp1i 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> 𝔅  e.  U. ran sigAlgebra )
71 simplr 792 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  x  e.  ~P𝔅
)
72 sigaclcu 30180 . . . . . . . . . 10  |-  ( (𝔅  e.  U.
ran sigAlgebra  /\  x  e.  ~P𝔅  /\  x  ~<_  om )  ->  U. x  e. 𝔅 )
7370, 71, 61, 72syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  U. x  e. 𝔅 )
7443, 68, 69, 73dstrvval 30532 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> 
( D `  U. x )  =  ( P `  ( `' X " U. x
) ) )
751, 9fvmpt2d 6293 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e. 𝔅 )  -> 
( D `  a
)  =  ( P `
 ( XRV/𝑐  _E  a ) ) )
7651, 55, 75syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  ( D `  a
)  =  ( P `
 ( XRV/𝑐  _E  a ) ) )
7743adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  P  e. Prob )
7868adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  X  e.  (rRndVar `  P
) )
7977, 78, 55orvcelval 30530 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  ( XRV/𝑐  _E  a )  =  ( `' X " a ) )
8079fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  ( P `  ( XRV/𝑐  _E  a ) )  =  ( P `  ( `' X " a ) ) )
8176, 80eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  /\  a  e.  x )  ->  ( D `  a
)  =  ( P `
 ( `' X " a ) ) )
8281ex 450 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> 
( a  e.  x  ->  ( D `  a
)  =  ( P `
 ( `' X " a ) ) ) )
8350, 82ralrimi 2957 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  ->  A. a  e.  x  ( D `  a )  =  ( P `  ( `' X " a ) ) )
8450, 83esumeq2d 30099 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> Σ* a  e.  x ( D `  a )  = Σ* a  e.  x ( P `  ( `' X " a ) ) )
8567, 74, 843eqtr4d 2666 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ~P𝔅
)  /\  ( x  ~<_  om  /\ Disj  a  e.  x  a ) )  -> 
( D `  U. x )  = Σ* a  e.  x ( D `  a ) )
8685ex 450 . . . . . 6  |-  ( (
ph  /\  x  e.  ~P𝔅 )  ->  ( ( x  ~<_  om  /\ Disj  a  e.  x  a )  ->  ( D `  U. x )  = Σ* a  e.  x ( D `  a ) ) )
8786ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. x  e.  ~P 𝔅 ( ( x  ~<_  om  /\ Disj  a  e.  x  a )  -> 
( D `  U. x )  = Σ* a  e.  x ( D `  a ) ) )
88 ismeas 30262 . . . . . 6  |-  (𝔅  e.  U. ran sigAlgebra  ->  ( D  e.  (measures ` 𝔅 )  <->  ( D :𝔅 --> ( 0 [,] +oo )  /\  ( D `  (/) )  =  0  /\  A. x  e.  ~P 𝔅 ( ( x  ~<_  om 
/\ Disj  a  e.  x  a )  ->  ( D `  U. x )  = Σ* a  e.  x ( D `
 a ) ) ) ) )
8920, 21, 88mp2b 10 . . . . 5  |-  ( D  e.  (measures ` 𝔅 )  <->  ( D :𝔅 --> ( 0 [,] +oo )  /\  ( D `  (/) )  =  0  /\  A. x  e.  ~P 𝔅 ( ( x  ~<_  om 
/\ Disj  a  e.  x  a )  ->  ( D `  U. x )  = Σ* a  e.  x ( D `
 a ) ) ) )
9016, 35, 87, 89syl3anbrc 1246 . . . 4  |-  ( ph  ->  D  e.  (measures ` 𝔅 ) )
911dmeqd 5326 . . . . . 6  |-  ( ph  ->  dom  D  =  dom  ( a  e. 𝔅 
|->  ( P `  ( XRV/𝑐  _E  a ) ) ) )
9215ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. a  e. 𝔅  ( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] +oo ) )
93 dmmptg 5632 . . . . . . 7  |-  ( A. a  e. 𝔅  ( P `  ( XRV/𝑐  _E  a ) )  e.  ( 0 [,] +oo )  ->  dom  ( a  e. 𝔅  |->  ( P `  ( XRV/𝑐  _E  a ) ) )  = 𝔅
)
9492, 93syl 17 . . . . . 6  |-  ( ph  ->  dom  ( a  e. 𝔅  |->  ( P `
 ( XRV/𝑐  _E  a ) ) )  = 𝔅
)
9591, 94eqtrd 2656 . . . . 5  |-  ( ph  ->  dom  D  = 𝔅 )
9695fveq2d 6195 . . . 4  |-  ( ph  ->  (measures `  dom  D )  =  (measures ` 𝔅 ) )
9790, 96eleqtrrd 2704 . . 3  |-  ( ph  ->  D  e.  (measures `  dom  D ) )
98 measbasedom 30265 . . 3  |-  ( D  e.  U. ran measures  <->  D  e.  (measures `  dom  D ) )
9997, 98sylibr 224 . 2  |-  ( ph  ->  D  e.  U. ran measures )
10095unieqd 4446 . . . . 5  |-  ( ph  ->  U. dom  D  = 
U.𝔅 )
101 unibrsiga 30249 . . . . 5  |-  U.𝔅  =  RR
102100, 101syl6eq 2672 . . . 4  |-  ( ph  ->  U. dom  D  =  RR )
103102fveq2d 6195 . . 3  |-  ( ph  ->  ( D `  U. dom  D )  =  ( D `  RR ) )
104 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  a  =  RR )  ->  a  =  RR )
105104oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  a  =  RR )  ->  ( XRV/𝑐  _E  a )  =  ( XRV/𝑐  _E  RR ) )
106 baselsiga 30178 . . . . . . . . . 10  |-  (𝔅  e.  (sigAlgebra `  RR )  ->  RR  e. 𝔅 )
10720, 106mp1i 13 . . . . . . . . 9  |-  ( ph  ->  RR  e. 𝔅 )
1082, 4, 107orvcelval 30530 . . . . . . . 8  |-  ( ph  ->  ( XRV/𝑐  _E  RR )  =  ( `' X " RR ) )
109108adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  =  RR )  ->  ( XRV/𝑐  _E  RR )  =  ( `' X " RR ) )
110105, 109eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  a  =  RR )  ->  ( XRV/𝑐  _E  a )  =  ( `' X " RR ) )
111110fveq2d 6195 . . . . 5  |-  ( (
ph  /\  a  =  RR )  ->  ( P `
 ( XRV/𝑐  _E  a ) )  =  ( P `  ( `' X " RR ) ) )
112 fimacnv 6347 . . . . . . . . 9  |-  ( X : U. dom  P --> RR  ->  ( `' X " RR )  =  U. dom  P )
11336, 112syl 17 . . . . . . . 8  |-  ( ph  ->  ( `' X " RR )  =  U. dom  P )
114113fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( P `  ( `' X " RR ) )  =  ( P `
 U. dom  P
) )
115 probtot 30474 . . . . . . . 8  |-  ( P  e. Prob  ->  ( P `  U. dom  P )  =  1 )
1162, 115syl 17 . . . . . . 7  |-  ( ph  ->  ( P `  U. dom  P )  =  1 )
117114, 116eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( P `  ( `' X " RR ) )  =  1 )
118117adantr 481 . . . . 5  |-  ( (
ph  /\  a  =  RR )  ->  ( P `
 ( `' X " RR ) )  =  1 )
119111, 118eqtrd 2656 . . . 4  |-  ( (
ph  /\  a  =  RR )  ->  ( P `
 ( XRV/𝑐  _E  a ) )  =  1 )
120 1red 10055 . . . 4  |-  ( ph  ->  1  e.  RR )
1211, 119, 107, 120fvmptd 6288 . . 3  |-  ( ph  ->  ( D `  RR )  =  1 )
122103, 121eqtrd 2656 . 2  |-  ( ph  ->  ( D `  U. dom  D )  =  1 )
123 elprob 30471 . 2  |-  ( D  e. Prob 
<->  ( D  e.  U. ran measures 
/\  ( D `  U. dom  D )  =  1 ) )
12499, 122, 123sylanbrc 698 1  |-  ( ph  ->  D  e. Prob )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   U_ciun 4520  Disj wdisj 4620   class class class wbr 4653    |-> cmpt 4729    _E cep 5028   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953   RRcr 9935   0cc0 9936   1c1 9937   +oocpnf 10071   RR*cxr 10073    <_ cle 10075   [,]cicc 12178  Σ*cesum 30089  sigAlgebracsiga 30170  𝔅cbrsiga 30244  measurescmeas 30258  Probcprb 30469  rRndVarcrrv 30502  ∘RV/𝑐corvc 30517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-esum 30090  df-siga 30171  df-sigagen 30202  df-brsiga 30245  df-meas 30259  df-mbfm 30313  df-prob 30470  df-rrv 30503  df-orvc 30518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator