MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmarea Structured version   Visualization version   Unicode version

Theorem dmarea 24684
Description: The domain of the area function is the set of finitely measurable subsets of  RR  X.  RR. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
dmarea  |-  ( A  e.  dom area  <->  ( A  C_  ( RR  X.  RR )  /\  A. x  e.  RR  ( A " { x } )  e.  ( `' vol " RR )  /\  (
x  e.  RR  |->  ( vol `  ( A
" { x }
) ) )  e.  L^1 ) )
Distinct variable group:    x, A

Proof of Theorem dmarea
Dummy variables  t 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgex 23537 . . . 4  |-  S. RR ( vol `  ( s
" { x }
) )  _d x  e.  _V
2 df-area 24683 . . . 4  |- area  =  ( s  e.  { t  e.  ~P ( RR 
X.  RR )  |  ( A. x  e.  RR  ( t " { x } )  e.  ( `' vol " RR )  /\  (
x  e.  RR  |->  ( vol `  ( t
" { x }
) ) )  e.  L^1 ) } 
|->  S. RR ( vol `  ( s " {
x } ) )  _d x )
31, 2dmmpti 6023 . . 3  |-  dom area  =  {
t  e.  ~P ( RR  X.  RR )  |  ( A. x  e.  RR  ( t " { x } )  e.  ( `' vol " RR )  /\  (
x  e.  RR  |->  ( vol `  ( t
" { x }
) ) )  e.  L^1 ) }
43eleq2i 2693 . 2  |-  ( A  e.  dom area  <->  A  e.  { t  e.  ~P ( RR 
X.  RR )  |  ( A. x  e.  RR  ( t " { x } )  e.  ( `' vol " RR )  /\  (
x  e.  RR  |->  ( vol `  ( t
" { x }
) ) )  e.  L^1 ) } )
5 imaeq1 5461 . . . . . 6  |-  ( t  =  A  ->  (
t " { x } )  =  ( A " { x } ) )
65eleq1d 2686 . . . . 5  |-  ( t  =  A  ->  (
( t " {
x } )  e.  ( `' vol " RR ) 
<->  ( A " {
x } )  e.  ( `' vol " RR ) ) )
76ralbidv 2986 . . . 4  |-  ( t  =  A  ->  ( A. x  e.  RR  ( t " {
x } )  e.  ( `' vol " RR ) 
<-> 
A. x  e.  RR  ( A " { x } )  e.  ( `' vol " RR ) ) )
85fveq2d 6195 . . . . . 6  |-  ( t  =  A  ->  ( vol `  ( t " { x } ) )  =  ( vol `  ( A " {
x } ) ) )
98mpteq2dv 4745 . . . . 5  |-  ( t  =  A  ->  (
x  e.  RR  |->  ( vol `  ( t
" { x }
) ) )  =  ( x  e.  RR  |->  ( vol `  ( A
" { x }
) ) ) )
109eleq1d 2686 . . . 4  |-  ( t  =  A  ->  (
( x  e.  RR  |->  ( vol `  ( t
" { x }
) ) )  e.  L^1  <->  ( x  e.  RR  |->  ( vol `  ( A " { x }
) ) )  e.  L^1 ) )
117, 10anbi12d 747 . . 3  |-  ( t  =  A  ->  (
( A. x  e.  RR  ( t " { x } )  e.  ( `' vol " RR )  /\  (
x  e.  RR  |->  ( vol `  ( t
" { x }
) ) )  e.  L^1 )  <->  ( A. x  e.  RR  ( A " { x }
)  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  ( A " { x }
) ) )  e.  L^1 ) ) )
1211elrab 3363 . 2  |-  ( A  e.  { t  e. 
~P ( RR  X.  RR )  |  ( A. x  e.  RR  ( t " {
x } )  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  (
t " { x } ) ) )  e.  L^1 ) }  <->  ( A  e. 
~P ( RR  X.  RR )  /\  ( A. x  e.  RR  ( A " { x } )  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  ( A " { x }
) ) )  e.  L^1 ) ) )
13 reex 10027 . . . . . 6  |-  RR  e.  _V
1413, 13xpex 6962 . . . . 5  |-  ( RR 
X.  RR )  e. 
_V
1514elpw2 4828 . . . 4  |-  ( A  e.  ~P ( RR 
X.  RR )  <->  A  C_  ( RR  X.  RR ) )
1615anbi1i 731 . . 3  |-  ( ( A  e.  ~P ( RR  X.  RR )  /\  ( A. x  e.  RR  ( A " { x } )  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  ( A " { x }
) ) )  e.  L^1 ) )  <-> 
( A  C_  ( RR  X.  RR )  /\  ( A. x  e.  RR  ( A " { x } )  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  ( A " { x }
) ) )  e.  L^1 ) ) )
17 3anass 1042 . . 3  |-  ( ( A  C_  ( RR  X.  RR )  /\  A. x  e.  RR  ( A " { x }
)  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  ( A " { x }
) ) )  e.  L^1 )  <->  ( A  C_  ( RR  X.  RR )  /\  ( A. x  e.  RR  ( A " { x } )  e.  ( `' vol " RR )  /\  (
x  e.  RR  |->  ( vol `  ( A
" { x }
) ) )  e.  L^1 ) ) )
1816, 17bitr4i 267 . 2  |-  ( ( A  e.  ~P ( RR  X.  RR )  /\  ( A. x  e.  RR  ( A " { x } )  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  ( A " { x }
) ) )  e.  L^1 ) )  <-> 
( A  C_  ( RR  X.  RR )  /\  A. x  e.  RR  ( A " { x }
)  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  ( A " { x }
) ) )  e.  L^1 ) )
194, 12, 183bitri 286 1  |-  ( A  e.  dom area  <->  ( A  C_  ( RR  X.  RR )  /\  A. x  e.  RR  ( A " { x } )  e.  ( `' vol " RR )  /\  (
x  e.  RR  |->  ( vol `  ( A
" { x }
) ) )  e.  L^1 ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   ~Pcpw 4158   {csn 4177    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   "cima 5117   ` cfv 5888   RRcr 9935   volcvol 23232   L^1cibl 23386   S.citg 23387  areacarea 24682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-sum 14417  df-itg 23392  df-area 24683
This theorem is referenced by:  areambl  24685  areass  24686  areaf  24688  areacirc  33505  arearect  37801  areaquad  37802
  Copyright terms: Public domain W3C validator