MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgex Structured version   Visualization version   Unicode version

Theorem itgex 23537
Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itgex  |-  S. A B  _d x  e.  _V

Proof of Theorem itgex
Dummy variables  k 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itg 23392 . 2  |-  S. A B  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  [_ ( Re `  ( B  /  ( _i ^
k ) ) )  /  y ]_ if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) ) )
2 sumex 14418 . 2  |-  sum_ k  e.  ( 0 ... 3
) ( ( _i
^ k )  x.  ( S.2 `  (
x  e.  RR  |->  [_ ( Re `  ( B  /  ( _i ^
k ) ) )  /  y ]_ if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) ) )  e.  _V
31, 2eqeltri 2697 1  |-  S. A B  _d x  e.  _V
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    e. wcel 1990   _Vcvv 3200   [_csb 3533   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   _ici 9938    x. cmul 9941    <_ cle 10075    / cdiv 10684   3c3 11071   ...cfz 12326   ^cexp 12860   Recre 13837   sum_csu 14416   S.2citg2 23385   S.citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-sum 14417  df-itg 23392
This theorem is referenced by:  ditgex  23616  ftc1lem1  23798  itgulm  24162  dmarea  24684  dfarea  24687  areaval  24691  ftc1anc  33493  itgsinexp  40170  wallispilem1  40282  wallispilem2  40283
  Copyright terms: Public domain W3C validator