Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmpt2ssx2 Structured version   Visualization version   Unicode version

Theorem dmmpt2ssx2 42115
Description: The domain of a mapping is a subset of its base classes expressed as union of Cartesian products over its second component, analogous to dmmpt2ssx 7235. (Contributed by AV, 30-Mar-2019.)
Hypothesis
Ref Expression
dmmpt2ssx2.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
dmmpt2ssx2  |-  dom  F  C_ 
U_ y  e.  B  ( A  X.  { y } )
Distinct variable groups:    x, A    x, y, B
Allowed substitution hints:    A( y)    C( x, y)    F( x, y)

Proof of Theorem dmmpt2ssx2
Dummy variables  u  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . . . 5  |-  F/_ u A
2 nfcsb1v 3549 . . . . 5  |-  F/_ y [_ u  /  y ]_ A
3 nfcv 2764 . . . . 5  |-  F/_ u C
4 nfcv 2764 . . . . 5  |-  F/_ v C
5 nfcv 2764 . . . . . 6  |-  F/_ x u
6 nfcsb1v 3549 . . . . . 6  |-  F/_ x [_ v  /  x ]_ C
75, 6nfcsb 3551 . . . . 5  |-  F/_ x [_ u  /  y ]_ [_ v  /  x ]_ C
8 nfcsb1v 3549 . . . . 5  |-  F/_ y [_ u  /  y ]_ [_ v  /  x ]_ C
9 csbeq1a 3542 . . . . 5  |-  ( y  =  u  ->  A  =  [_ u  /  y ]_ A )
10 csbeq1a 3542 . . . . . 6  |-  ( x  =  v  ->  C  =  [_ v  /  x ]_ C )
11 csbeq1a 3542 . . . . . 6  |-  ( y  =  u  ->  [_ v  /  x ]_ C  = 
[_ u  /  y ]_ [_ v  /  x ]_ C )
1210, 11sylan9eqr 2678 . . . . 5  |-  ( ( y  =  u  /\  x  =  v )  ->  C  =  [_ u  /  y ]_ [_ v  /  x ]_ C )
131, 2, 3, 4, 7, 8, 9, 12cbvmpt2x2 42114 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( v  e. 
[_ u  /  y ]_ A ,  u  e.  B  |->  [_ u  /  y ]_ [_ v  /  x ]_ C )
14 dmmpt2ssx2.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
15 vex 3203 . . . . . . . 8  |-  v  e. 
_V
16 vex 3203 . . . . . . . 8  |-  u  e. 
_V
1715, 16op2ndd 7179 . . . . . . 7  |-  ( t  =  <. v ,  u >.  ->  ( 2nd `  t
)  =  u )
1817csbeq1d 3540 . . . . . 6  |-  ( t  =  <. v ,  u >.  ->  [_ ( 2nd `  t
)  /  y ]_ [_ ( 1st `  t
)  /  x ]_ C  =  [_ u  / 
y ]_ [_ ( 1st `  t )  /  x ]_ C )
1915, 16op1std 7178 . . . . . . . 8  |-  ( t  =  <. v ,  u >.  ->  ( 1st `  t
)  =  v )
2019csbeq1d 3540 . . . . . . 7  |-  ( t  =  <. v ,  u >.  ->  [_ ( 1st `  t
)  /  x ]_ C  =  [_ v  /  x ]_ C )
2120csbeq2dv 3992 . . . . . 6  |-  ( t  =  <. v ,  u >.  ->  [_ u  /  y ]_ [_ ( 1st `  t
)  /  x ]_ C  =  [_ u  / 
y ]_ [_ v  /  x ]_ C )
2218, 21eqtrd 2656 . . . . 5  |-  ( t  =  <. v ,  u >.  ->  [_ ( 2nd `  t
)  /  y ]_ [_ ( 1st `  t
)  /  x ]_ C  =  [_ u  / 
y ]_ [_ v  /  x ]_ C )
2322mpt2mptx2 42113 . . . 4  |-  ( t  e.  U_ u  e.  B  ( [_ u  /  y ]_ A  X.  { u } ) 
|->  [_ ( 2nd `  t
)  /  y ]_ [_ ( 1st `  t
)  /  x ]_ C )  =  ( v  e.  [_ u  /  y ]_ A ,  u  e.  B  |-> 
[_ u  /  y ]_ [_ v  /  x ]_ C )
2413, 14, 233eqtr4i 2654 . . 3  |-  F  =  ( t  e.  U_ u  e.  B  ( [_ u  /  y ]_ A  X.  { u } )  |->  [_ ( 2nd `  t )  / 
y ]_ [_ ( 1st `  t )  /  x ]_ C )
2524dmmptss 5631 . 2  |-  dom  F  C_ 
U_ u  e.  B  ( [_ u  /  y ]_ A  X.  { u } )
26 nfcv 2764 . . 3  |-  F/_ u
( A  X.  {
y } )
27 nfcv 2764 . . . 4  |-  F/_ y { u }
282, 27nfxp 5142 . . 3  |-  F/_ y
( [_ u  /  y ]_ A  X.  { u } )
29 sneq 4187 . . . 4  |-  ( y  =  u  ->  { y }  =  { u } )
309, 29xpeq12d 5140 . . 3  |-  ( y  =  u  ->  ( A  X.  { y } )  =  ( [_ u  /  y ]_ A  X.  { u } ) )
3126, 28, 30cbviun 4557 . 2  |-  U_ y  e.  B  ( A  X.  { y } )  =  U_ u  e.  B  ( [_ u  /  y ]_ A  X.  { u } )
3225, 31sseqtr4i 3638 1  |-  dom  F  C_ 
U_ y  e.  B  ( A  X.  { y } )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   [_csb 3533    C_ wss 3574   {csn 4177   <.cop 4183   U_ciun 4520    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ` cfv 5888    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  mpt2exxg2  42116
  Copyright terms: Public domain W3C validator