Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmtrcl Structured version   Visualization version   Unicode version

Theorem dmtrcl 37934
Description: The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020.)
Assertion
Ref Expression
dmtrcl  |-  ( X  e.  V  ->  dom  |^|
{ x  |  ( X  C_  x  /\  ( x  o.  x
)  C_  x ) }  =  dom  X )
Distinct variable group:    x, X
Allowed substitution hint:    V( x)

Proof of Theorem dmtrcl
StepHypRef Expression
1 trclubg 13740 . . . 4  |-  ( X  e.  V  ->  |^| { x  |  ( X  C_  x  /\  ( x  o.  x )  C_  x
) }  C_  ( X  u.  ( dom  X  X.  ran  X ) ) )
2 dmss 5323 . . . 4  |-  ( |^| { x  |  ( X 
C_  x  /\  (
x  o.  x ) 
C_  x ) } 
C_  ( X  u.  ( dom  X  X.  ran  X ) )  ->  dom  |^|
{ x  |  ( X  C_  x  /\  ( x  o.  x
)  C_  x ) }  C_  dom  ( X  u.  ( dom  X  X.  ran  X ) ) )
31, 2syl 17 . . 3  |-  ( X  e.  V  ->  dom  |^|
{ x  |  ( X  C_  x  /\  ( x  o.  x
)  C_  x ) }  C_  dom  ( X  u.  ( dom  X  X.  ran  X ) ) )
4 dmun 5331 . . . 4  |-  dom  ( X  u.  ( dom  X  X.  ran  X ) )  =  ( dom 
X  u.  dom  ( dom  X  X.  ran  X
) )
5 dmxpss 5565 . . . . 5  |-  dom  ( dom  X  X.  ran  X
)  C_  dom  X
6 ssequn2 3786 . . . . 5  |-  ( dom  ( dom  X  X.  ran  X )  C_  dom  X  <-> 
( dom  X  u.  dom  ( dom  X  X.  ran  X ) )  =  dom  X )
75, 6mpbi 220 . . . 4  |-  ( dom 
X  u.  dom  ( dom  X  X.  ran  X
) )  =  dom  X
84, 7eqtri 2644 . . 3  |-  dom  ( X  u.  ( dom  X  X.  ran  X ) )  =  dom  X
93, 8syl6sseq 3651 . 2  |-  ( X  e.  V  ->  dom  |^|
{ x  |  ( X  C_  x  /\  ( x  o.  x
)  C_  x ) }  C_  dom  X )
10 ssmin 4496 . . 3  |-  X  C_  |^|
{ x  |  ( X  C_  x  /\  ( x  o.  x
)  C_  x ) }
11 dmss 5323 . . 3  |-  ( X 
C_  |^| { x  |  ( X  C_  x  /\  ( x  o.  x
)  C_  x ) }  ->  dom  X  C_  dom  |^|
{ x  |  ( X  C_  x  /\  ( x  o.  x
)  C_  x ) } )
1210, 11mp1i 13 . 2  |-  ( X  e.  V  ->  dom  X 
C_  dom  |^| { x  |  ( X  C_  x  /\  ( x  o.  x )  C_  x
) } )
139, 12eqssd 3620 1  |-  ( X  e.  V  ->  dom  |^|
{ x  |  ( X  C_  x  /\  ( x  o.  x
)  C_  x ) }  =  dom  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    u. cun 3572    C_ wss 3574   |^|cint 4475    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  dfrtrcl5  37936
  Copyright terms: Public domain W3C validator