MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtrclfv Structured version   Visualization version   Unicode version

Theorem dmtrclfv 13759
Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
dmtrclfv  |-  ( R  e.  V  ->  dom  ( t+ `  R )  =  dom  R )

Proof of Theorem dmtrclfv
StepHypRef Expression
1 trclfvub 13748 . . . 4  |-  ( R  e.  V  ->  (
t+ `  R
)  C_  ( R  u.  ( dom  R  X.  ran  R ) ) )
2 dmss 5323 . . . 4  |-  ( ( t+ `  R
)  C_  ( R  u.  ( dom  R  X.  ran  R ) )  ->  dom  ( t+ `  R )  C_  dom  ( R  u.  ( dom  R  X.  ran  R
) ) )
31, 2syl 17 . . 3  |-  ( R  e.  V  ->  dom  ( t+ `  R )  C_  dom  ( R  u.  ( dom  R  X.  ran  R
) ) )
4 dmun 5331 . . . 4  |-  dom  ( R  u.  ( dom  R  X.  ran  R ) )  =  ( dom 
R  u.  dom  ( dom  R  X.  ran  R
) )
5 dm0rn0 5342 . . . . . . 7  |-  ( dom 
R  =  (/)  <->  ran  R  =  (/) )
6 xpeq1 5128 . . . . . . . . . 10  |-  ( dom 
R  =  (/)  ->  ( dom  R  X.  ran  R
)  =  ( (/)  X. 
ran  R ) )
7 0xp 5199 . . . . . . . . . 10  |-  ( (/)  X. 
ran  R )  =  (/)
86, 7syl6eq 2672 . . . . . . . . 9  |-  ( dom 
R  =  (/)  ->  ( dom  R  X.  ran  R
)  =  (/) )
98dmeqd 5326 . . . . . . . 8  |-  ( dom 
R  =  (/)  ->  dom  ( dom  R  X.  ran  R )  =  dom  (/) )
10 dm0 5339 . . . . . . . . 9  |-  dom  (/)  =  (/)
1110a1i 11 . . . . . . . 8  |-  ( dom 
R  =  (/)  ->  dom  (/)  =  (/) )
12 eqcom 2629 . . . . . . . . 9  |-  ( dom 
R  =  (/)  <->  (/)  =  dom  R )
1312biimpi 206 . . . . . . . 8  |-  ( dom 
R  =  (/)  ->  (/)  =  dom  R )
149, 11, 133eqtrd 2660 . . . . . . 7  |-  ( dom 
R  =  (/)  ->  dom  ( dom  R  X.  ran  R )  =  dom  R
)
155, 14sylbir 225 . . . . . 6  |-  ( ran 
R  =  (/)  ->  dom  ( dom  R  X.  ran  R )  =  dom  R
)
16 dmxp 5344 . . . . . 6  |-  ( ran 
R  =/=  (/)  ->  dom  ( dom  R  X.  ran  R )  =  dom  R
)
1715, 16pm2.61ine 2877 . . . . 5  |-  dom  ( dom  R  X.  ran  R
)  =  dom  R
1817uneq2i 3764 . . . 4  |-  ( dom 
R  u.  dom  ( dom  R  X.  ran  R
) )  =  ( dom  R  u.  dom  R )
19 unidm 3756 . . . 4  |-  ( dom 
R  u.  dom  R
)  =  dom  R
204, 18, 193eqtri 2648 . . 3  |-  dom  ( R  u.  ( dom  R  X.  ran  R ) )  =  dom  R
213, 20syl6sseq 3651 . 2  |-  ( R  e.  V  ->  dom  ( t+ `  R )  C_  dom  R )
22 trclfvlb 13749 . . 3  |-  ( R  e.  V  ->  R  C_  ( t+ `  R ) )
23 dmss 5323 . . 3  |-  ( R 
C_  ( t+ `  R )  ->  dom  R  C_  dom  ( t+ `  R ) )
2422, 23syl 17 . 2  |-  ( R  e.  V  ->  dom  R 
C_  dom  ( t+ `  R ) )
2521, 24eqssd 3620 1  |-  ( R  e.  V  ->  dom  ( t+ `  R )  =  dom  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    u. cun 3572    C_ wss 3574   (/)c0 3915    X. cxp 5112   dom cdm 5114   ran crn 5115   ` cfv 5888   t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-trcl 13726
This theorem is referenced by:  rntrclfvRP  38023
  Copyright terms: Public domain W3C validator