| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem8 | Structured version Visualization version Unicode version | ||
| Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
| Ref | Expression |
|---|---|
| tfrlem.1 |
|
| Ref | Expression |
|---|---|
| tfrlem8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 |
. . . . . . . . 9
| |
| 2 | 1 | tfrlem3 7474 |
. . . . . . . 8
|
| 3 | 2 | abeq2i 2735 |
. . . . . . 7
|
| 4 | fndm 5990 |
. . . . . . . . . . 11
| |
| 5 | 4 | adantr 481 |
. . . . . . . . . 10
|
| 6 | 5 | eleq1d 2686 |
. . . . . . . . 9
|
| 7 | 6 | biimprcd 240 |
. . . . . . . 8
|
| 8 | 7 | rexlimiv 3027 |
. . . . . . 7
|
| 9 | 3, 8 | sylbi 207 |
. . . . . 6
|
| 10 | eleq1a 2696 |
. . . . . 6
| |
| 11 | 9, 10 | syl 17 |
. . . . 5
|
| 12 | 11 | rexlimiv 3027 |
. . . 4
|
| 13 | 12 | abssi 3677 |
. . 3
|
| 14 | ssorduni 6985 |
. . 3
| |
| 15 | 13, 14 | ax-mp 5 |
. 2
|
| 16 | 1 | recsfval 7477 |
. . . . 5
|
| 17 | 16 | dmeqi 5325 |
. . . 4
|
| 18 | dmuni 5334 |
. . . 4
| |
| 19 | vex 3203 |
. . . . . 6
| |
| 20 | 19 | dmex 7099 |
. . . . 5
|
| 21 | 20 | dfiun2 4554 |
. . . 4
|
| 22 | 17, 18, 21 | 3eqtri 2648 |
. . 3
|
| 23 | ordeq 5730 |
. . 3
| |
| 24 | 22, 23 | ax-mp 5 |
. 2
|
| 25 | 15, 24 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-wrecs 7407 df-recs 7468 |
| This theorem is referenced by: tfrlem10 7483 tfrlem12 7485 tfrlem13 7486 tfrlem14 7487 tfrlem15 7488 tfrlem16 7489 |
| Copyright terms: Public domain | W3C validator |