MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom0 Structured version   Visualization version   Unicode version

Theorem dom0 8088
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.)
Assertion
Ref Expression
dom0  |-  ( A  ~<_  (/) 
<->  A  =  (/) )

Proof of Theorem dom0
StepHypRef Expression
1 reldom 7961 . . . . 5  |-  Rel  ~<_
21brrelexi 5158 . . . 4  |-  ( A  ~<_  (/)  ->  A  e.  _V )
3 0domg 8087 . . . 4  |-  ( A  e.  _V  ->  (/)  ~<_  A )
42, 3syl 17 . . 3  |-  ( A  ~<_  (/)  ->  (/)  ~<_  A )
54pm4.71i 664 . 2  |-  ( A  ~<_  (/) 
<->  ( A  ~<_  (/)  /\  (/)  ~<_  A ) )
6 sbthb 8081 . 2  |-  ( ( A  ~<_  (/)  /\  (/)  ~<_  A )  <-> 
A  ~~  (/) )
7 en0 8019 . 2  |-  ( A 
~~  (/)  <->  A  =  (/) )
85, 6, 73bitri 286 1  |-  ( A  ~<_  (/) 
<->  A  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   class class class wbr 4653    ~~ cen 7952    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-er 7742  df-en 7956  df-dom 7957
This theorem is referenced by:  pwcdadom  9038  fin1a2lem11  9232  cfpwsdom  9406
  Copyright terms: Public domain W3C validator