MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcdadom Structured version   Visualization version   Unicode version

Theorem pwcdadom 9038
Description: A property of dominance over a powerset, and a main lemma for gchac 9503. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwcdadom  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P A  ~<_  B )

Proof of Theorem pwcdadom
StepHypRef Expression
1 canthwdom 8484 . . . 4  |-  -.  ~P A  ~<_*  A
2 0elpw 4834 . . . . . . . . . . 11  |-  (/)  e.  ~P ( A  +c  A
)
32n0ii 3922 . . . . . . . . . 10  |-  -.  ~P ( A  +c  A
)  =  (/)
4 dom0 8088 . . . . . . . . . 10  |-  ( ~P ( A  +c  A
)  ~<_  (/)  <->  ~P ( A  +c  A )  =  (/) )
53, 4mtbir 313 . . . . . . . . 9  |-  -.  ~P ( A  +c  A
)  ~<_  (/)
6 cdafn 8991 . . . . . . . . . . . 12  |-  +c  Fn  ( _V  X.  _V )
7 fndm 5990 . . . . . . . . . . . 12  |-  (  +c  Fn  ( _V  X.  _V )  ->  dom  +c  =  ( _V  X.  _V ) )
86, 7ax-mp 5 . . . . . . . . . . 11  |-  dom  +c  =  ( _V  X.  _V )
98ndmov 6818 . . . . . . . . . 10  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  (/) )
109breq2d 4665 . . . . . . . . 9  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( ~P ( A  +c  A )  ~<_  ( A  +c  B )  <->  ~P ( A  +c  A
)  ~<_  (/) ) )
115, 10mtbiri 317 . . . . . . . 8  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  ~P ( A  +c  A )  ~<_  ( A  +c  B ) )
1211con4i 113 . . . . . . 7  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
1312simpld 475 . . . . . 6  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  A  e.  _V )
14 0ex 4790 . . . . . 6  |-  (/)  e.  _V
15 xpsneng 8045 . . . . . 6  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
1613, 14, 15sylancl 694 . . . . 5  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  X.  { (/) } ) 
~~  A )
17 endom 7982 . . . . 5  |-  ( ( A  X.  { (/) } )  ~~  A  -> 
( A  X.  { (/)
} )  ~<_  A )
18 domwdom 8479 . . . . 5  |-  ( ( A  X.  { (/) } )  ~<_  A  ->  ( A  X.  { (/) } )  ~<_*  A )
19 wdomtr 8480 . . . . . 6  |-  ( ( ~P A  ~<_*  ( A  X.  { (/)
} )  /\  ( A  X.  { (/) } )  ~<_*  A )  ->  ~P A  ~<_*  A )
2019expcom 451 . . . . 5  |-  ( ( A  X.  { (/) } )  ~<_*  A  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  ->  ~P A  ~<_*  A ) )
2116, 17, 18, 204syl 19 . . . 4  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  ->  ~P A  ~<_*  A ) )
221, 21mtoi 190 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  -.  ~P A  ~<_*  ( A  X.  { (/)
} ) )
23 pwcdaen 9007 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ~P ( A  +c  A )  ~~  ( ~P A  X.  ~P A
) )
2413, 13, 23syl2anc 693 . . . . . . . 8  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P ( A  +c  A
)  ~~  ( ~P A  X.  ~P A ) )
25 domen1 8102 . . . . . . . 8  |-  ( ~P ( A  +c  A
)  ~~  ( ~P A  X.  ~P A )  ->  ( ~P ( A  +c  A )  ~<_  ( A  +c  B )  <-> 
( ~P A  X.  ~P A )  ~<_  ( A  +c  B ) ) )
2624, 25syl 17 . . . . . . 7  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  <->  ( ~P A  X.  ~P A )  ~<_  ( A  +c  B
) ) )
2726ibi 256 . . . . . 6  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  X.  ~P A
)  ~<_  ( A  +c  B ) )
28 cdaval 8992 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
2912, 28syl 17 . . . . . 6  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( A  +c  B )  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
3027, 29breqtrd 4679 . . . . 5  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  X.  ~P A
)  ~<_  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
31 unxpwdom 8494 . . . . 5  |-  ( ( ~P A  X.  ~P A )  ~<_  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) )  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  \/  ~P A  ~<_  ( B  X.  { 1o } ) ) )
3230, 31syl 17 . . . 4  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( ~P A  ~<_*  ( A  X.  { (/)
} )  \/  ~P A  ~<_  ( B  X.  { 1o } ) ) )
3332ord 392 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( -.  ~P A  ~<_*  ( A  X.  { (/)
} )  ->  ~P A  ~<_  ( B  X.  { 1o } ) ) )
3422, 33mpd 15 . 2  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P A  ~<_  ( B  X.  { 1o } ) )
3512simprd 479 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  B  e.  _V )
36 1on 7567 . . 3  |-  1o  e.  On
37 xpsneng 8045 . . 3  |-  ( ( B  e.  _V  /\  1o  e.  On )  -> 
( B  X.  { 1o } )  ~~  B
)
3835, 36, 37sylancl 694 . 2  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ( B  X.  { 1o }
)  ~~  B )
39 domentr 8015 . 2  |-  ( ( ~P A  ~<_  ( B  X.  { 1o }
)  /\  ( B  X.  { 1o } ) 
~~  B )  ->  ~P A  ~<_  B )
4034, 38, 39syl2anc 693 1  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P A  ~<_  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    X. cxp 5112   dom cdm 5114   Oncon0 5723    Fn wfn 5883  (class class class)co 6650   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953    ~<_* cwdom 8462    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-wdom 8464  df-cda 8990
This theorem is referenced by:  gchdomtri  9451  gchpwdom  9492  gchhar  9501
  Copyright terms: Public domain W3C validator