| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwcdadom | Structured version Visualization version Unicode version | ||
| Description: A property of dominance over a powerset, and a main lemma for gchac 9503. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| pwcdadom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canthwdom 8484 |
. . . 4
| |
| 2 | 0elpw 4834 |
. . . . . . . . . . 11
| |
| 3 | 2 | n0ii 3922 |
. . . . . . . . . 10
|
| 4 | dom0 8088 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | mtbir 313 |
. . . . . . . . 9
|
| 6 | cdafn 8991 |
. . . . . . . . . . . 12
| |
| 7 | fndm 5990 |
. . . . . . . . . . . 12
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . . . . 11
|
| 9 | 8 | ndmov 6818 |
. . . . . . . . . 10
|
| 10 | 9 | breq2d 4665 |
. . . . . . . . 9
|
| 11 | 5, 10 | mtbiri 317 |
. . . . . . . 8
|
| 12 | 11 | con4i 113 |
. . . . . . 7
|
| 13 | 12 | simpld 475 |
. . . . . 6
|
| 14 | 0ex 4790 |
. . . . . 6
| |
| 15 | xpsneng 8045 |
. . . . . 6
| |
| 16 | 13, 14, 15 | sylancl 694 |
. . . . 5
|
| 17 | endom 7982 |
. . . . 5
| |
| 18 | domwdom 8479 |
. . . . 5
| |
| 19 | wdomtr 8480 |
. . . . . 6
| |
| 20 | 19 | expcom 451 |
. . . . 5
|
| 21 | 16, 17, 18, 20 | 4syl 19 |
. . . 4
|
| 22 | 1, 21 | mtoi 190 |
. . 3
|
| 23 | pwcdaen 9007 |
. . . . . . . . 9
| |
| 24 | 13, 13, 23 | syl2anc 693 |
. . . . . . . 8
|
| 25 | domen1 8102 |
. . . . . . . 8
| |
| 26 | 24, 25 | syl 17 |
. . . . . . 7
|
| 27 | 26 | ibi 256 |
. . . . . 6
|
| 28 | cdaval 8992 |
. . . . . . 7
| |
| 29 | 12, 28 | syl 17 |
. . . . . 6
|
| 30 | 27, 29 | breqtrd 4679 |
. . . . 5
|
| 31 | unxpwdom 8494 |
. . . . 5
| |
| 32 | 30, 31 | syl 17 |
. . . 4
|
| 33 | 32 | ord 392 |
. . 3
|
| 34 | 22, 33 | mpd 15 |
. 2
|
| 35 | 12 | simprd 479 |
. . 3
|
| 36 | 1on 7567 |
. . 3
| |
| 37 | xpsneng 8045 |
. . 3
| |
| 38 | 35, 36, 37 | sylancl 694 |
. 2
|
| 39 | domentr 8015 |
. 2
| |
| 40 | 34, 38, 39 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-1o 7560 df-2o 7561 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-wdom 8464 df-cda 8990 |
| This theorem is referenced by: gchdomtri 9451 gchpwdom 9492 gchhar 9501 |
| Copyright terms: Public domain | W3C validator |