MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2mpt2cl Structured version   Visualization version   Unicode version

Theorem el2mpt2cl 7251
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021.)
Hypotheses
Ref Expression
el2mpt2cl.o  |-  O  =  ( x  e.  A ,  y  e.  B  |->  ( s  e.  C ,  t  e.  D  |->  E ) )
el2mpt2cl.e  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( C  =  F  /\  D  =  G ) )
Assertion
Ref Expression
el2mpt2cl  |-  ( A. x  e.  A  A. y  e.  B  ( C  e.  U  /\  D  e.  V )  ->  ( W  e.  ( S ( X O Y ) T )  ->  ( ( X  e.  A  /\  Y  e.  B )  /\  ( S  e.  F  /\  T  e.  G )
) ) )
Distinct variable groups:    A, s,
t, x, y    B, s, t, x, y    C, s, t    D, s, t   
x, F, y    x, G, y    x, U, y   
x, V, y    X, s, t, x, y    Y, s, t, x, y
Allowed substitution hints:    C( x, y)    D( x, y)    S( x, y, t, s)    T( x, y, t, s)    U( t, s)    E( x, y, t, s)    F( t, s)    G( t, s)    O( x, y, t, s)    V( t, s)    W( x, y, t, s)

Proof of Theorem el2mpt2cl
StepHypRef Expression
1 el2mpt2cl.o . . 3  |-  O  =  ( x  e.  A ,  y  e.  B  |->  ( s  e.  C ,  t  e.  D  |->  E ) )
21el2mpt2csbcl 7250 . 2  |-  ( A. x  e.  A  A. y  e.  B  ( C  e.  U  /\  D  e.  V )  ->  ( W  e.  ( S ( X O Y ) T )  ->  ( ( X  e.  A  /\  Y  e.  B )  /\  ( S  e.  [_ X  /  x ]_ [_ Y  / 
y ]_ C  /\  T  e.  [_ X  /  x ]_ [_ Y  /  y ]_ D ) ) ) )
3 simpl 473 . . . . . . 7  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  X  e.  A )
4 simplr 792 . . . . . . . 8  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  x  =  X )  ->  Y  e.  B )
5 el2mpt2cl.e . . . . . . . . . 10  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( C  =  F  /\  D  =  G ) )
65simpld 475 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  C  =  F )
76adantll 750 . . . . . . . 8  |-  ( ( ( ( X  e.  A  /\  Y  e.  B )  /\  x  =  X )  /\  y  =  Y )  ->  C  =  F )
84, 7csbied 3560 . . . . . . 7  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  x  =  X )  ->  [_ Y  /  y ]_ C  =  F )
93, 8csbied 3560 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  [_ X  /  x ]_ [_ Y  /  y ]_ C  =  F
)
109eleq2d 2687 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( S  e.  [_ X  /  x ]_ [_ Y  /  y ]_ C  <->  S  e.  F ) )
115simprd 479 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  D  =  G )
1211adantll 750 . . . . . . . 8  |-  ( ( ( ( X  e.  A  /\  Y  e.  B )  /\  x  =  X )  /\  y  =  Y )  ->  D  =  G )
134, 12csbied 3560 . . . . . . 7  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  x  =  X )  ->  [_ Y  /  y ]_ D  =  G )
143, 13csbied 3560 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  [_ X  /  x ]_ [_ Y  /  y ]_ D  =  G
)
1514eleq2d 2687 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( T  e.  [_ X  /  x ]_ [_ Y  /  y ]_ D  <->  T  e.  G ) )
1610, 15anbi12d 747 . . . 4  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( ( S  e. 
[_ X  /  x ]_ [_ Y  /  y ]_ C  /\  T  e. 
[_ X  /  x ]_ [_ Y  /  y ]_ D )  <->  ( S  e.  F  /\  T  e.  G ) ) )
1716biimpd 219 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( ( S  e. 
[_ X  /  x ]_ [_ Y  /  y ]_ C  /\  T  e. 
[_ X  /  x ]_ [_ Y  /  y ]_ D )  ->  ( S  e.  F  /\  T  e.  G )
) )
1817imdistani 726 . 2  |-  ( ( ( X  e.  A  /\  Y  e.  B
)  /\  ( S  e.  [_ X  /  x ]_ [_ Y  /  y ]_ C  /\  T  e. 
[_ X  /  x ]_ [_ Y  /  y ]_ D ) )  -> 
( ( X  e.  A  /\  Y  e.  B )  /\  ( S  e.  F  /\  T  e.  G )
) )
192, 18syl6 35 1  |-  ( A. x  e.  A  A. y  e.  B  ( C  e.  U  /\  D  e.  V )  ->  ( W  e.  ( S ( X O Y ) T )  ->  ( ( X  e.  A  /\  Y  e.  B )  /\  ( S  e.  F  /\  T  e.  G )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533  (class class class)co 6650    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  wspthnonp  26744
  Copyright terms: Public domain W3C validator