HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elcnfn Structured version   Visualization version   Unicode version

Theorem elcnfn 28741
Description: Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elcnfn  |-  ( T  e.  ContFn 
<->  ( T : ~H --> CC  /\  A. x  e. 
~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( T `  w
)  -  ( T `
 x ) ) )  <  y ) ) )
Distinct variable group:    x, w, y, z, T

Proof of Theorem elcnfn
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq1 6190 . . . . . . . . 9  |-  ( t  =  T  ->  (
t `  w )  =  ( T `  w ) )
2 fveq1 6190 . . . . . . . . 9  |-  ( t  =  T  ->  (
t `  x )  =  ( T `  x ) )
31, 2oveq12d 6668 . . . . . . . 8  |-  ( t  =  T  ->  (
( t `  w
)  -  ( t `
 x ) )  =  ( ( T `
 w )  -  ( T `  x ) ) )
43fveq2d 6195 . . . . . . 7  |-  ( t  =  T  ->  ( abs `  ( ( t `
 w )  -  ( t `  x
) ) )  =  ( abs `  (
( T `  w
)  -  ( T `
 x ) ) ) )
54breq1d 4663 . . . . . 6  |-  ( t  =  T  ->  (
( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y  <->  ( abs `  ( ( T `  w )  -  ( T `  x )
) )  <  y
) )
65imbi2d 330 . . . . 5  |-  ( t  =  T  ->  (
( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y )  <-> 
( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( T `  w
)  -  ( T `
 x ) ) )  <  y ) ) )
76rexralbidv 3058 . . . 4  |-  ( t  =  T  ->  ( E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y )  <->  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( T `  w
)  -  ( T `
 x ) ) )  <  y ) ) )
872ralbidv 2989 . . 3  |-  ( t  =  T  ->  ( A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y )  <->  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( T `  w
)  -  ( T `
 x ) ) )  <  y ) ) )
9 df-cnfn 28706 . . 3  |-  ContFn  =  {
t  e.  ( CC 
^m  ~H )  |  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( t `  w
)  -  ( t `
 x ) ) )  <  y ) }
108, 9elrab2 3366 . 2  |-  ( T  e.  ContFn 
<->  ( T  e.  ( CC  ^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( T `  w
)  -  ( T `
 x ) ) )  <  y ) ) )
11 cnex 10017 . . . 4  |-  CC  e.  _V
12 ax-hilex 27856 . . . 4  |-  ~H  e.  _V
1311, 12elmap 7886 . . 3  |-  ( T  e.  ( CC  ^m  ~H )  <->  T : ~H --> CC )
1413anbi1i 731 . 2  |-  ( ( T  e.  ( CC 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( abs `  (
( T `  w
)  -  ( T `
 x ) ) )  <  y ) )  <->  ( T : ~H
--> CC  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( abs `  ( ( T `  w )  -  ( T `  x )
) )  <  y
) ) )
1510, 14bitri 264 1  |-  ( T  e.  ContFn 
<->  ( T : ~H --> CC  /\  A. x  e. 
~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( abs `  (
( T `  w
)  -  ( T `
 x ) ) )  <  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934    < clt 10074    - cmin 10266   RR+crp 11832   abscabs 13974   ~Hchil 27776   normhcno 27780    -h cmv 27782   ContFnccnfn 27810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-cnfn 28706
This theorem is referenced by:  cnfnc  28789  0cnfn  28839  lnfnconi  28914
  Copyright terms: Public domain W3C validator