| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfm2 | Structured version Visualization version Unicode version | ||
| Description: An element of a mapping filter. (Contributed by Jeff Hankins, 26-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfm2.l |
|
| Ref | Expression |
|---|---|
| elfm2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfm 21751 |
. 2
| |
| 2 | ssfg 21676 |
. . . . . . . . . 10
| |
| 3 | elfm2.l |
. . . . . . . . . 10
| |
| 4 | 2, 3 | syl6sseqr 3652 |
. . . . . . . . 9
|
| 5 | 4 | sselda 3603 |
. . . . . . . 8
|
| 6 | 5 | adantrr 753 |
. . . . . . 7
|
| 7 | 6 | 3ad2antl2 1224 |
. . . . . 6
|
| 8 | simprr 796 |
. . . . . 6
| |
| 9 | imaeq2 5462 |
. . . . . . . 8
| |
| 10 | 9 | sseq1d 3632 |
. . . . . . 7
|
| 11 | 10 | rspcev 3309 |
. . . . . 6
|
| 12 | 7, 8, 11 | syl2anc 693 |
. . . . 5
|
| 13 | 12 | rexlimdvaa 3032 |
. . . 4
|
| 14 | 3 | eleq2i 2693 |
. . . . . . . 8
|
| 15 | elfg 21675 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl5bb 272 |
. . . . . . 7
|
| 17 | 16 | 3ad2ant2 1083 |
. . . . . 6
|
| 18 | imass2 5501 |
. . . . . . . . . . 11
| |
| 19 | sstr2 3610 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | com12 32 |
. . . . . . . . . . . 12
|
| 21 | 20 | ad2antll 765 |
. . . . . . . . . . 11
|
| 22 | 18, 21 | syl5 34 |
. . . . . . . . . 10
|
| 23 | 22 | reximdv 3016 |
. . . . . . . . 9
|
| 24 | 23 | expr 643 |
. . . . . . . 8
|
| 25 | 24 | com23 86 |
. . . . . . 7
|
| 26 | 25 | expimpd 629 |
. . . . . 6
|
| 27 | 17, 26 | sylbid 230 |
. . . . 5
|
| 28 | 27 | rexlimdv 3030 |
. . . 4
|
| 29 | 13, 28 | impbid 202 |
. . 3
|
| 30 | 29 | anbi2d 740 |
. 2
|
| 31 | 1, 30 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-fbas 19743 df-fg 19744 df-fm 21742 |
| This theorem is referenced by: fmfg 21753 elfm3 21754 imaelfm 21755 |
| Copyright terms: Public domain | W3C validator |